Glacier melt contribution to summer streamflow during extremely dry summers

Marit van Tiel
Daphné Freudiger, Irene Kohn, Markus Weiler, Jan Seibert, Kerstin Stahl

HS2.1.7 Snow and ice accumulation, melt, and runoff generation in catchment hydrology: monitoring and modelling
Role of Europe’s water tower during extremely dry summers

Extreme dry and hot summers cause droughts and lead to **low flow** conditions.

In Europe, such extreme summers were observed in recent years:
- e.g. 2003, 2015 and 2018

The European Alps - also known as Europe’s water tower - play an important role during such extreme summers by providing (extra) **water from the melt of snow and ice**.

How much water do glaciers supply during such downstream low flow years?

We focus on the **Rhine river basin** and analyzed simulated and observed streamflow from the glacierized headwaters and downstream.
Overview of methods - upstream and downstream

1 Downstream - whole Rhine basin

Observed streamflow from gauging stations Lobith (NL), Cologne (DE) and Basel (CH) from 1970-2019

2 Upstream - glacierized headwater catchments

- HBV-light model
- streamflow components: $Q_{\text{ice}} + Q_{\text{snow}} + Q_{\text{rain}}$
- Simulation period: 1973 - 2020
- 15 gauged and 50 ungauged catchments
- Model calibration based on Q, snow (SWE and area), glacier volume changes
Selection of downstream low flow years in period 1970-2019 based on a range of criteria:

- lowest total Q (1 Oct – 30 Sep)
- lowest total summer flow (1 Jun – 31 Aug)
- 7 day minimum flow
- fixed (mean annual 7-day min. flow) and varying threshold (20th percentile)

Lowest (low) flow years:

Multiple low flow years:
- 1989 - 1992
- 2017 - 2019
Examples of downstream low flow years

Low flow years have different characteristics

7-day Q in 2018 (up) /1991 (below)

Percentiles based on 1970-2019 flow

Van Tiel et al., vEGU2021
During downstream low flow years, upstream summers are in general also drier and warmer, especially in 2003, 2015 and 2018.
Streamflow in summer is in most low flow years lower than normal, also upstream - but not in 1991 and 2019

- Q_{snow} also shows a negative anomaly in most years
- Q_{rain} is lower than normal in most years, but not in 1996, 2011 and 2019
- Q_{ice} is above or at average in all years, 2003 had the highest ice melt component
Streamflow in summer from the headwater catchments comes often for more than 50% from the melt of snow and ice in downstream low flow years.

- In 2003, 20% of the headwater runoff came from the melt of ice.

Glacier cover in all headwater catchments is 6% in total.
Some downstream low flow years are characterized by high snow water equivalent (SWE): 1992, 2003 and 2018.....

....while other low flow years had very little snow: 1976, 2011 and 2017

Simulated SWE averaged for all Rhine headwater catchments

Van Tiel et al., vEGU2021
Ice melt component in low flow years

- Q_{ice} shows in most years positive anomalies
- 2003 shows the highest anomaly
- In recent years the anomalies are smaller and in some catchments negative

$$A = \frac{Q_{\text{ice}(y)} - Q_{\text{ice}}}{Q_{\text{ice}}}$$

60/65 glacierized catchments were selected that have glacier cover $>0.1\%$ in 2010.
Annual glacier mass balances are (very) negative during downstream low flow years → glaciers supply extra water but also reduce in volume…
…. This means that more melt is needed per unit area (higher melt rate) to provide the same volume of ice melt to downstream.

From 1974 to 2019 - melt rates have increased.
• How important is ice melt for downstream streamflow in low flow years?

• We compared the volume of Q_{ice} with the volume of water at Lobith

• For the daily time scale - the maximum absolute Q_{ice} volume in each low flow year was compared with the streamflow volume 13 days later in Lobith (travel time estimation from Huss & Hock, 2018)

• Ice melt contribution varies between 2-7% for the summer, but is much higher on the daily timescale (up to 22%). If there would not have been glaciers, streamflow would have been significantly lower on summer days in these already critically low flow years

<table>
<thead>
<tr>
<th>low flow year</th>
<th>Q_{ice} summer [%]</th>
<th>Q_{ice} daily maximum [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>3.1</td>
<td>(30-7) 8.5</td>
</tr>
<tr>
<td>1989</td>
<td>2.1</td>
<td>(29-8) 7.5</td>
</tr>
<tr>
<td>1990</td>
<td>2.5</td>
<td>(18-8) 10.7</td>
</tr>
<tr>
<td>1991</td>
<td>2.4</td>
<td>(5-9) 13.1</td>
</tr>
<tr>
<td>1992</td>
<td>2.9</td>
<td>(10-9) 9.8</td>
</tr>
<tr>
<td>1996</td>
<td>1.9</td>
<td>(23-8) 5.2</td>
</tr>
<tr>
<td>1998</td>
<td>4.1</td>
<td>(25-8) 16.1</td>
</tr>
<tr>
<td>2003</td>
<td>6.7</td>
<td>(26-8) 21.8</td>
</tr>
<tr>
<td>2011</td>
<td>2.8</td>
<td>(5-9) 11.8</td>
</tr>
<tr>
<td>2015</td>
<td>3.1</td>
<td>(21-8) 10.4</td>
</tr>
<tr>
<td>2017</td>
<td>3.6</td>
<td>(17-8) 7.2</td>
</tr>
<tr>
<td>2018</td>
<td>3.0</td>
<td>(18-8) 11.9</td>
</tr>
<tr>
<td>2019</td>
<td>2.2</td>
<td>(8-8) 7.7</td>
</tr>
</tbody>
</table>

Dates indicate day in Lobith with max Q_{ice} in headwaters
Conclusions

• Downstream low flow years have different characteristics; in the headwaters they are most, but not all, drier and warmer

• Often >50% of the summer headwater runoff comes from the melt of snow and ice (most from snow), during downstream low flow years

• Glacier melt is important during low flow years in the Rhine and is partly compensating for precipitation deficits → this compensation is declining over time
Questions? Please get in touch or join me in the text based chat

Thursday 29th April 09:45 - 10:30 CEST

Session HS2.1.7 Snow and ice accumulation, melt, and runoff generation in catchment hydrology: monitoring and modelling

marit.van.tiel@hydrology.uni-freiburg.de

Environmental Hydrological Systems
University of Freiburg, Germany

References:

Related research:

@Marit_vanTiel