Relative importance of **tropopause structure** and **diabatic heating** for **baroclinic instability**

Kristine Flacké Haualand and Thomas Spengler

Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Modifications of tropopause structure

degree of smoothing tropopause altitude modifications in the lower stratosphere

Wave structure

for sharp and smooth tropopause

Warm air rises poleward and cold air sinks equatorward

Same qualitative structure for sharp and smooth tropopause

Shading: QG streamfunction Black contours: temperature Grey contours: vertical motion ω Dashed yellow line: tropopause

(cc)

Baroclinic growth rate

and the impact from smoothing

Impact from smoothing (shading)

- Weak increase or decrease due to
 - + Improved phase between v and T
 - Weakening of PV gradient
- Negligible for most realistic setting, i.e., jump in stratification <u>and</u> wind shear (**black dot**)

Growth rate sensitivity

to degree of smoothing, tropopause altitude, structure in lower stratosphere, and latent heating

Change in growth rate relative to reference with sharp tropopause:

- Weak sensitivitity to tropopause smoothing and altitude
- *Moderate* sensitivity to modifications in structure in lower stratosphere
- Strong sensitivity to heating intensity

CC Û BY

Baroclinic instability is more sensitive to latent heating than tropopause structure

Haualand, K. F. and Spengler, T., Weather Clim. Dynam. Discuss. [preprint], in review, 2021.