

Article

From Mixing to the Large Scale Circulation: How the Inverse Cascade Is Involved in the Formation of the Subsurface Currents in the Gulf of Guinea

Fernand Assene ^{1,2,*}, Yves Morel ^{1,*}, Audrey Delpech ¹, Micael Aguedjou ^{1,7}, Julien Jouanno ¹, Sophie Cravatte ¹, Frédéric Marin ¹, Claire Ménesguen ³, Alexis Chaigneau ^{1,7,8}, Isabelle Dadou ¹, Gael Alory ¹, Ryan Holmes ⁴, Bernard Bourlès ⁵ and Ariane Koch-Larrouy ^{1,6}

Projects Alti-ETAO (OSTST) TriAtlas (H2020)

Assene et al, fluids, 2020

Introduction : General circulation in Tropical Atlantic

Schott et al, 2004

Introduction : subsurface circulation in Gulf of Guinea

GOAL : → Explain the formation of SEUC/NEUC-GUC + westward currents → Role of (sub)mesoscale dynamics

TOOLS : Numerical simulation of the Equatorial Atlantic

Jouanno et al, 2016-2017, Hernandez et al, 2017

NEMO model / configuration

Initial+Boundary : MERCATOR – GLORYS2V4 reanalysis

Atm forcing DFS5.2 : ERAinterim reanalysis + CheapAML (Deremble 2013)

Validation

Mean zonal velocity

-50

-100

-150

-200

-250

-300

-350

0

-50

-100

-150

-200

-250

-300

-350

6°S 4°S 2°S 0°

SSFC

EUC

2°S 0°

Latitude (°)

2°N

4°N 6°N

U (m/s) Lon= 0°

0

6°5 4°5

Validation

Variability of zonal velocity at 10°W (15th of each month)

Bourlès et al, 2002 Brandt et al, 2010 Herbert et al, 2016 ^{0.2} Kolodziejczyk et al, 2009 _{0.15} Kolodziejczyk et al, 2014

6

Analysis based on POTENTIAL VORTICITY (PV)

~ CONSERVATION

 ζ = rot (U) major physical quantity Conservation

But ζ is not conserved

~ INVERSION

Velocity field can be evaluated from the PV (Anomaly) at geophysical scale (geostrophic equilibrium)

PV signature of the currents

SEUC/NEUC-GUC and westward currents associated with same PV anomaly, located in isopycnal layers 1 and 2

PV signature of the currents : Mean zonal currents

Zonal PV tongues

Salinity signature of the currents : Mean field

Salt transport by EUC from west to east, an then mixing occurs

Instantaneous fields : zoom on a specific vortex (10th of May)

Isopycnic maps

_atitude (°)

Latitude (°)

Latitude (°)

Vertical sections

Annual cycle / seasonal variability

Mean signature => zonal jets

NOT THE END OF STORY !!!!

What are the mechanisms responsible for the creation of the PV anomalies in the vortex cores? 13

Adiabatic process PV is conserved

a/ Transport of PV (tracer) through background (meridional) gradient

Langrangian analysis

follow particles (backward from fluids parcels of vortex core) evaluate of PV is conserved or not during trajectory if not, try to evaluate which diabatic mechanism involved

Langrangian analysis

Langrangian analysis : example of the high PV particles

16

Conclusion/discussion

Many processes can lead to the formation of (sub)mesoscale eddies

To infer which is the major one (adiabatic/friction/diapycnal mixing)

- \Rightarrow more detailed diagnostics needed on diabatic terms
- \Rightarrow Sensitivity to parameterization of diabatic processes

Continuity / discontinuity with Western area (NEUC / GUC) ?

Deepen the analysis of the effect of Equatorial Upwelling on vortex destruction and PV redistribution

Inter-annual variability ?

This is « truth » from a realistic simulation, is it similar in nature? => identify vortices

