

DORIS results on Precise Orbit Determination and on geocenter and scale solutions from CNES/CLS IDS Analysis Center contribution to the ITRF2020

Hugues Capdeville*, Jean-Michel Lemoine*, Adrien Mezerette* and Guilhem Moreaux** *CNES/CLS AC (GRG) ** IDS Combination Center

EGU21-5384

G2 - Reference Frames and Geodetic Observing Systems G2.4 - Precise Orbit Determination for Geodesy and Earth Science Tue, 27 Apr, 15:30–17:00

Outline

□ Models and Standards Update

Processing Strategy update

POD resultsOPR and DORIS RMS of fit

Status of POD for DORIS satellites used for altimetry
 DORIS RMS of fit

Comparison to external orbits

□ Impact on the multi-satellite solution

Ongoing and future work

Models/Standards update

□ Models and standards recommended by IERS

Models/Standards		OLD	NEW
Earth rotation	Mean pole	IERS2010	Linear mean pole from updated IERS conventions
	Subdaily pole model	Previous IERS convention	Desai & Sibois from updated IERS conventions
Gravity model	Time variable gravity field	EIGEN-GRGS.RL03	EIGEN-GRGS.RL04
	Oceanic/Atmospheric gravity Dealiasing Products	No	AOD 1B RL06 (GFZ)
Ocean tides	Station displacements (ocean loading)	FES2012	FES2014b
	Gravitational attraction	FES2012	FES2014b
Phase Law		Alcatel, STAREC-B/C	New Alcatel, STAREC-B/C

Processing strategy update

Processing strategy (GINS/DYNAMO software)

Theme	OLD	NEW
Attitude modelling (Spacecraft + Solar array)	Attitude model for all satellites	Quaternions for Jason-1, Jason-2 and Jason-3
Coefficient Solar Radiation pressure Cr	Satellite dependent estimated and fixed	Satellite and time dependent Adjusted per arc (Not done for ITRF2020 but planned)
Estimated measurement parameters	One frequency bias per pass	One frequency bias and drift for SAA stations per pass (for Jason-1, Jason-2 and Jason-3)
Elevation cut-off and data downweighting	Cut-off 12° downweighting: elev²/400 for elev < 20°	Cut-off 10°
Integration Step Size	60 sec	30 sec
SAA mitigation	Corrected data for Jason-1 and SPOT-5 Using SAA data from the most affected satellites only for POD (only for Jason-1)	Corrected data for Jason-1 and SPOT-5 Using SAA data from the most affected satellites only for POD (for Jason-1, Jason-2&3, Sentinel-3A&B)

Processing strategy update

□Available DORIS data have been processed from 1993/01 to 2020/12 to contribute to the realization of the ITRF2020

ITRF2020= ITRF2014 + new missions (Jason-3, Sentinel-3A, Sentinel-3B)

POD results

DORIS RMS of fit and OPR Acceleration Amplitude / Radiation pressure coefficient

	SATELLITE	DORIS RMS (mm/s)	OPR amplitude average (10 ⁻⁹ m/s ²)		Solar radiation
			Along-track	Cross-track	coefficient Cr
	SPOT-2	0.42	1.8	3.6	1.07
	SPOT-3	0.44	1.1	3.4	1.07
	SPOT-4	0.42	1.4	2.9	1.16
	TOPEX	0.46	1.5	5.8	1.03
	JASON-1	0.32	2.1	2.9	0.94
	SPOT-5	0.34	1.6	1.8	1.05
	ENVISAT	0.39	1.0	2.0	1.05
	JASON-2	0.32	4.0	2.1	0.97
	CRYOSAT-2	0.35	2.9	2.6	1.0
	HY2A	0.34	0.5	3.1	0.86
	SARAL	0.34	1.4	2.4	1.0
	JASON-3	0.36	0.9	2.2	0.99
	SENTINEL-3A	0.37	2.3	1.4	1.0
	SENTINEL-3B	0.38	1.4	1.5	1.0

• For the two directions, Along-track and Cross-track, the mean amplitudes are lower than 4x10⁻⁹ m/s², reflecting a satisfying level in the modeling of the satellite macromodels and the attitude law.

DORIS RMS of fit

- For TOPEX satellite, there are 2 level of DORIS RMS residuals respectively for the 2 DORIS USO (change from Nominal DORIS instrument to Backup in Dec. 1998).
- There is a ~59 days periodic signal for both satellites (draconitic period, β ' angle).

DORIS RMS of fit

For ENVISAT, there are 2 level of DORIS RMS residuals reflecting the change from DORIS nominal chain to DORIS redundant chain in Jun. 2004.

For Cryosat-2, there is a ~240 days periodic signal (draconitic period).

DORIS RMS of fit

- For both satellites, there is an annual periodic signal (draconitic period).
- A similar signature for both satellites which could be linked to solar activity.

DORIS RMS of fit

- For Jason-3, the level of DORIS RMS residuals is slightly higher compared to Jason-2, explained by its higher sensitivity to the South Atlantic Anomaly (SAA).
- There is a ~59 days periodic signal for both satellites (draconitic period).

DORIS RMS of fit

There is a ~40 days periodic signal for both satellites.

Comparison to CNES (POE-F) orbit

RMS and Avg. Radial orbit differences (in cm)

- There is a good agreement between GRG orbit and external orbit CNES-POE-F (< 1 cm RMS).
- For ENVISAT, there is a semi-annual periodic signal.
- •For Cryosat-2, there is a ~240 days periodic signal (draconitic period).

Comparison to CNES (POE-F) orbit

RMS and Avg. Radial orbit differences (in cm)

- There is a good agreement between GRG orbit and external orbit CNES-POE-F (< 1 cm RMS).
- For SARAL, there is an annual periodic signal.

Comparison to CNES (POE-F) orbit

RMS and Avg. Radial orbit differences (in cm)

There is a good agreement between GRG orbit and external orbit CNES-POE-F (~0.8 cm RMS).
There is a 59 days periodic signal in the radial component and small bias (~-0.1 cm).

S CLS

Comparison to CNES (POE-F) orbit

RMS and Avg. Radial orbit differences (in cm)

There is a good agreement between GRG orbit and CNES-POE-F (< 1 cm RMS).
There is a small bias (~-0.04 cm) and a semi-annual periodic signal.

Impact on the multisatellite solution

□ SAA strategy is also applied for Sentinel-3A&B satellites

SAA strategy: not using SAA data from the most affected satellites on the station positioning

- Single satellites solutions differences: Sentinel-3B - Saral WRMS of weekly differnces on East component
- Multisatellite solution when SAA strategy is applied for Sentinel-3A&B Impact on Arequipa station

Improvement in East component.

Sentinel-3B single satellite SAA stations impacted.

Impact on the multisatellite solution

GRG SPOT-5 Scale (black curve)

□ Impact on the multisatellite solution when SPOT-5 does not contribute to the scale

Multisatellite solution when SPOT-5 does not contribute to the scale (in red)

S CLS

Impact on the multisatellite solution

□ GRG multisatellite solution (weekly) compared to DPOD2014v5

GRG ITRF2014 like (in red) vs GRG ITRF2020 (in blue)

S CLS

See also presentation of Moreaux & al :

The IDS Contribution to the ITRF2020: Realization and Evaluation (EGU21-2315)

Ongoing and future work

Ongoing work

- Continue discussions with other ACs to improve the IDS solutions (comparison of single satellite solutions)
- Continue to evaluate GRG orbits:

by comparisons to GRG orbits with GNSS

by comparison to other external orbits

by Independent SLR RMS of fit

by Altimeter crossover Cycles

Implement HY-2C and Sentinel-6 in our processing chain

Given Setup Setup

- Write a paper on the ITRF2020 reprocessing
- Improve satellite macromodels from analyzing ITRF2020 reprocessing
- Use quaternions for Sentinel-3A&B and Cryosat-2
- ...