

DEMOCRITUS UNIVERSITY OF THRACE DEPARTMENT OF ENVIRONMENTAL ENGINEERING LABORATORY OF ATMOSPHERIC POLLUTION AND POLLUTION CONTROL ENGINEERING OF ATMOSPHERIC POLLUTANTS

Cause-and-effect relations between cosmic rays, electric field, aerosols and clouds

Stathopoulos S. ^{1*}, Misios S.¹, Kourtidis K.¹

1 Laboratory Of Atmospheric Pollution and Pollution Control Engineering of Atmospheric Pollutants, Dept.

of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece

*corresponding author e-mail: sstathop@env.duth.gr

European Union European Social Fund Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

©Stathopoulos et al.,2021. All Rights Reserved

- To study the cause-and-effect relations, during a Forbush Decrease (FD) event (07/12/2015), over a North Atlantic region (23.5°-40.5° N, 40.5°-44.5° W), between
 - →Galactic Cosmic Rays (GCRs)
 - \rightarrow Electric Field
 - \rightarrow Aerosols
 - \rightarrow Clouds

Data

- → Daily mean Neutron data (FD) (16/11-26/12/2015) from Hermanus Neutron Monitor Station (HRMS), (Neutron Monitor DataBase, NMDB, <u>http://www01.nmdb.eu/nest/</u>)
- → Daily mean Potential Gradient data (PG) (16/11-26/12/2015) from the University of Evora Graciosa, Azores Station (Global Coordination of Atmospheric Electricity Measurements, GLOCAEM, <u>https://glocaem.wordpress.com/data-access/</u>)
- →Daily mean remote sensing data (Col.6.1, IvI3) (16/11-26/12/2015) from MODIS/Aqua (Earthdata/Giovanni, <u>https://giovanni.gsfc.nasa.gov/giovanni/</u>)
 - \rightarrow Aerosol Optical Depth at 550nm (AOD)
 - \rightarrow Cloud Fraction (CF)
 - → Cloud Optical Thickness (COT)
 - \rightarrow Cloud Top Pressure (CTP)
 - \rightarrow Cirrus Reflectance (CR)
 - \rightarrow Cloud Effective Radius-Liquid (CERL)

Region

Fig.1 The study area (yellow rectangle) with the Graciosa, Azores GLOCAEM station (yellow marker) and the Hermanus, NMDB station (blue marker) (Google Maps)

Convergent Cross Mapping (CCM)

Fig.2 Convergent cross mapping tests (CCM) for correspondence between shadow manifolds (M_x and M_y), constructed using lagged-coordinate embeddings of X and Y, respectively (lag = τ) (Figure courtesy of Dr. Sugihara, adopted from Sugihara et al., 2012)

Methodology

Fig.3 Flowchart illustrating the methodology followed (Modification of Fig. 2 of Stathopoulos et al., 2021) ©Stathopoulos et al., 2021. All Rights Reserved

Calculations of E - τ - θ

Fig.4 Forecast skill expressed with Pearson's correlation coefficient (ρ) of the embedding dimension (E) **(upper left)**, of the time delay embedding lag parameter (tau, τ) for E=5 **(bottom left)** and of the nonlinearity parameter (θ) for E=5 and τ =3 **(upper right**), for FD time series

7

CCM Results

Fig.5 Cross-mapped skill (ρ) as a function of library size (L) for FD-AOD (**upper left**), FD-CF (**upper right**), FD-COT (**bottom left**) and FD-CTP (**bottom right**). xmap denotes cross mapping which is translated as Y parameter affects X parameter $_{\text{@Stathopoulos et al.,2021. All Rights Reserved}}$

CCM Results

Fig.6 Cross-mapped skill (ρ) as a function of library size (L) for FD-CR (**upper left**), FD-PG (**upper right**), FD-CERL (**bottom left**). xmap denotes cross mapping which is translated as Y parameter affects X parameter

Causality

FD-CTP

Fig.6 Cross-mapped skill (ρ) as a function of CCM's time delay prediction parameter (tp) for FD-AOD (**upper left**), FD-CF(**upper right**), FD-CTP (**bottom left**). xmap denotes cross mapping which is translated as Y parameter affects X parameter

Causality

Table 1 Maximum Pearson's correlation coefficient (ρ_{max}) and the corresponding time delay prediction parameter (t_p) value for the FD-AOD–CF-CTP-CR-CERL-PG cross mapping relations for E=4-6 (*yellow cells denote negative or zero* t_p values for 2/3 of the results)^{*}

	Ε=4 τ=4		Ε=5 τ=3		Ε=6 τ=2	
	t _o	ρ _{max}	t _p	ρ _{max}	t _o	ρ _{max}
FD xmap AOD	-10	0.670	-10	0.625	-10	0.644
AOD xmap FD	7	0.712	8	0.771	9	0.801
FD xmap CF	10	0.545	0	0.457	-10	0.398
CF xmap FD	8	0.557	6	0.665	10	0.682
FD xmap CTP	8	0.653	6	0.620	10	0.596
CTP xmap FD	7	0.790	8	0.789	10	0.739
FD xmap CR	-9	0.388	8	0.386	7	0.390
FD xmap CERL	-1	0.310	-2	0.394	-3	0.255
FD xmap PG	2	0.123	-3	0.137	6	0.032

- * $t_p < 0 \rightarrow$ causality between X,Y (Y causes X)
 - $t_p = 0 \rightarrow$ synchronous interaction between X,Y
 - $t_{p} > 0 \rightarrow$ no causality between X,Y (coupling)

Conclusions X-Y (effect of Y on X)

✓ We found causality between FD-AOD, FD-CF and FD-CERL

- ✓ Strong coupling seems to exist between AOD-FD, CF-FD, CTP-FD, FD-CTP, FD-CR, and FD-PG (Josic, 2000; Rulkov, 1995)
- ✓ We found no causality between FD-COT and CR-FD
- ✓ There is probably strong forcing between PG-FD and FD-CERL, so their relation should be examined using Granger causality (Granger, 1969)
- ✓ Lack of statistical significance can possibly be explained by the fact that the expected change between the parameters is smaller than the noise due to 12
 meteorology or retrieval artifacts
 ©Stathopoulos et al.,2021. All Rights Reserved

References

- Ebisuzaki, W., 1997. A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated. J. Clim. 10, 2147–2153. doi:10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2
- Granger, C.W.J., 1969. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 37, 424. doi:10.2307/1912791
- Josic, K., 2000. Synchronization of chaotic systems and invariant manifolds. Nonlinearity 13, 1321– 1336. doi:10.1088/0951-7715/13/4/318
- Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I., 1995. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994. doi:10.1103/PhysRevE.51.980
- Stathopoulos, S., Tsonis, A.A., Kourtidis, K., 2021. On the cause-and-effect relations between aerosols, water vapor, and clouds over East Asia. Theor. Appl. Climatol. 144, 711–722. doi:10.1007/s00704-021-03563-7
- Sugihara, G., May, R., Ye, H., Hsieh, C. -H., Deyle, E., Fogarty, M., Munch, S., 2012. Detecting Causality in Complex Ecosystems. Science (80-.). 338, 496–500. doi:10.1126/science.1227079
- Takens, F., 1981. Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, vol 898. Springer, Berlin, Heidelberg

Thank you for your attention