

EGU-567: Uncovering the impact of Gokceada Volcanic Zone on pressure and temperature conditions of Thrace Basin in the Northern Aegean Sea using 1D basin modelling and seismic velocity extraction

AYBERK UYANIK, PhD. Candidate

Exploration Geoscientist Turkish Petroleum Corporation

NAVIGATION TIPS

* **Tip 1:** You can directly go to the section menu by clicking the buttons!

Introduction

- Regional Geology
- Gokceada Volcanic Zone (GVZ)
- Seismic Stratigraphy

Methodology

- PPFG & Temperature Graphs
- 3D Pore Pressure Modeling Workflow
- Basin Modeling Strategy

Results

- Impact of GVZ on pressure & temperatures
- 1D Basin Modelling Burial History Charts
- 3D Pore Pressure Modeling

Conclusion

INTRODUCTION MENU

Problem definition:

- Products of intense volcanism from Eocene to Miocene can be observed on the island of Gokceada however its extent into offshore region is not known!
- Basin modelling and ppfg/temperature studies has not been conducted before.
- Understanding the impact of GVZ is crucial for a robust assessment of the prospectivity of the region.

Aim & Scope:

- Introducing the discovery, presence and extent of Gokceada Volcanic Zone in the Northern Aegean Sea.
- Revealing the pressure and temperature conditions of Southern Gokceada Offshore area and how they were affected by GVZ.

REGIONAL GEOLOGY

- Thrace Basin; Eocene-recent sedimentary succession, present at NE Aegean Sea
- Gas prone basin, conventionalunconventional fields with limited oil production
- Ganos Fault Zone (GAFZ) as the SW
 extent of the North Anatolian Fault Zone (NAFZ)
- Study area located at the offshore portion surrounding Gokceada island

TECTONOSTRATIGRAPHY

- Post-collisional extension phase controlled by highangled normal faults and extensional wedges
- Collisional phase

Modified from Kilias et al., 2015

 Potential provenance of Eocene succession is from S, initiated by deepsea fans

Maravelis & Zelilidis, 2012

EOCENE SHALES – KARAAGAC FORMATION

- content; potential source rock
- Reaching 100-200 m. thickness in eroded areas; original thickness must be larger

Modified from Siyako, 2007

Metamorphic Basement

- 2-3 km • thickness
- Ypresian-٠ Lutetian aged (Early Eocene)

GOKCEADA VOLCANIC ZONE (GVZ)

Gokceada Volcanic Zone (GVZ)

- Intense volcanism from Eocene-Miocene; products can be observed at onshore Gokceada as extinct volcanoes, cones, tuffs, rhyolites and volcano-sedimentary succession
- 30-40 km long volcanic region extends in a NNW-SSE orientation; observable on seismic sections for the offshore portion
- A significant heat source to consider for both potential hydrocarbon and geothermal exploration projects

- Chaotic seismic facies in the middle distorting the continuity of the reflectors
- Characterised by cone and dome shaped, high amplitude geometries

SEISMIC INTERPRETATION & FACIES ANALYSIS

- G-1 and A-1 wells are projected to the section, in A-1; frequency of gas shows increases in Eocene
- 450 m/Ma sedimentation rate for the Karaagac Formation; consistent with the thickness measured as 2-3 km.

FIGURE 2 – PERPENDICULAR DIRECTION

Same seismic facies can be observed ٠

SEISMIC INTERPRETATION & FACIES ANALYSIS

- High burial rates due to the extensional regime initiated at Early-Mid Eocene, dominated by perfect examples of growth wedge strata
- Gokceada Volcanic Zone migrates towards SE

METHODOLOGY MENU

METHODOLOGY – TEMPERATURE PROFILES

Well registration		Pre-drill prediction	Post-drill analysis			Unit conversions		
CALCULATE & DISPLAY			EXPORT DATA					
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6	MD (m.) 1093 2305.5 3504 0 0	BHT (F) 118 160 230 0 0 0	TVDbml (m.) 0 1072 2284.5 3483	AAPG (C) 18.00 49.39 75.36 116.78	Harr (C) 18.00 49.48 85.12 136.18	AAPG Grads (C/km) 28.36 29.28 21.42 34.56	Harr Grads (C/km) 33.93 29.37 29.39 42.60	
Change Col	ours AAPG: red	▼ Harr.: blue ▼					\$	
Post-drill terr	pperature analysis of A	Legend → AAPG: → Harrison et al. (1983)	Post-di	rill geotherm	al gradient a	analysis of A-	1 Legend → AAPG Gradients → Harrison et al. (1983)	

- Bottom hole temperatures (BHTs) have been converted into static ones using AAPG correction and Harrison et al. (1983) formulas
- Industry-wide Horner plot method is not applicable for the wells in the region due to lack of robust recordings of circulation ending time and logging times
- An open source web application, named as *Temperature Analyser*, has been developed for pre & post drill evaluation of temperature conditions
- The application is available at; <u>https://github.com/Ayberk-</u> <u>Uyanik/Temperature-Analyser</u>

METHODOLOGY – PPFG GRAPHS

MD/KB(m) ^

-FG Eaton -Mud Weights 300 -PP dt e3 -OBG rhob log - Casings 600 900 120 1500 1800 2100 2400 2700 3000 v 6.00 14.00 22.00 FG Eaton _ PPg

G-1 Well

METHODOLOGY – 3D PORE PRESSURE MODELING

- Upscaled Point Data
- Data Intensity Control
- Quality Check

- Boundary for 3D Models
- Optimum Boundaries for fast process

- 3D Petrophysical Cube
- Interpolation method issue (Gaussian, Krigging, Moving Average, etc.)
- Quality Check

METHODOLOGY – GOKCEADA CASE

Point Data Intensity Map View

Pore Pressure Cube

• Bowers (1995) method

Reflected Pore Pressure Cube

- Pore pressure cube intersected with seismic section (Fig.1)
- Allows evaluation of pressure regime in a vertical & lateral sense
- Helps detection of meaningful pressure anomalies

• Source Rock properties

- Type III Kerogen, 13% TOC
- Pyrolysis results indicate a mature source rock profile
- T_{max} ; 440-450 ^oC
- Varying thickness at onshore Gokceada and Gallipoli Peninsula reaching 100-200 m.
- Depositional environment; pro-delta shales

METHODOLOGY – BASIN MODELLING

Boundary Conditions for the Thrace Basin in the Northern Aegean Sea •

PWD - Southern Gokceada [m]

20.00

0.00

40.00

Sediment-water interface temperatures

EGU-567– Ayberk Uyanik, 29th April 2021

METHODOLOGY – BASIN MODELLING

• Facies Determination for Pseudowell-1

- A pseudo-well (PS-1) has been assigned for the 1D Basin Modelling study
- Thickest point has been selected to represent the whole sedimentary succession

• Facies Determination for Pseudowell-1

	Period	Facies	Code	Color	Lithology group	Lithology	Petroleum systems	Kinetics group	Kinetics	TOC [%]
	Quaternary Sediment	10	10	-	Clastic sediments 👻	Siltstone (organic 👻	Overburden Rock 👻	~	~	
2	Miocene Succession	9	9	-	Clastic sediments \neg	Sandstone (typica 👻	Reservoir Rock -	-	~	
3	Danismen Fm. Erode	8	8	-	Clastic sediments $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Sandstone (typica 👻	Reservoir Rock 🛛 👻	-	~	
4	Danismen Fm.	7	7	-	Clastic sediments 📼	Sandstone (typica 👻	Reservoir Rock -	-	~	
5	Osmancik Fm.	6	6	-	Clastic sediments \neg	Sandstone (typica 👻	Reservoir Rock -	-	~	
6	Mezardere Fm.	5	5	•	Clastic sediments \neg	Shale (typical) -	Seal Rock -	-	~	
7	Ceylan Fm.	4	4	-	Clastic sediments \neg	Tuff (basaltic) -	Seal Rock -	-	~	
8	Sogucak Fm.	3	3	-	Carbonate rocks 📼	Limestone (organ 👻	Reservoir Rock -	-	~	
9	Ficitepe Fm.	2	2	-	Clastic sediments \neg	Conglomerate (ty 👻	Overburden Rock 👻	-	~	
10	Karaagac Fm.	1	1	-	Clastic sediments 📼	Shale (organic ric 👻	Source Rock -	Kerogen-oil-gas 👻	Burnham(1989)_1 -	13.00
11	Basement	0	0	-	Metamorphic rock 👻	Slate -	*	~	~	

- Eocene shales; Type III Kerogen, 13% TOC
- Uplift & erosion phase causing an angular unconformity has been implemented for the Oligo-Miocene transition

METHODOLOGY – BASIN MODELLING

Maturity Mapping

Source Rock Scenarios

Property	Good Source Rock	Poor Source Rock
Thickness (m.)	100	25
TOC (%)	13	1
Geothermal Gradient (⁰ C/km)	35	28

- TWT Map of Eocene shales has been converted into Depth map
- 2 scenarios has been generated based on the source rock potential

RESULTS & DISCUSSION MENU

Temperature

- Higher temperatures and geothermal gradients in G-1; towards Gokceada Volcanic Zone
- Similar trend is expected towards Southern Gokceada Offshore

RESULTS & DISCUSSION – WELLS PORE PRESSURES

Pore Pressure

- Unlike temperatures and geothermal gradients, pressures decrease in G-1; towards Gokceada Volcanic Zone (GVZ)
- Pressure increases in A-1 coincide with the depths at where gas shows occurred
- Declining pressure values are related with GVZ products characterised by low porosity & permeability

RESULTS & DISCUSSION – 1D BASIN MODELLING

Maturity vs. Pore Pressure

- VR Burial history chart illustrates that Eocene shales of Karaagac Formation are in a mature state
- Pore pressures range between 5000-12000 psi for the Karaagac Formation
- Hydrocarbon generation might be one of the reasons for pressure development

RESULTS & DISCUSSION – 1D BASIN MODELLING

Temperatures & Geothermal Gradients

- Present-day temperatures are highest in the Karaagac Formation, 150-160 °C for the deepest part
- By the effect of the Gokceada Volcanic
 Zone, geothermal gradients reach 35-45
 ^oC/km interval during Eocene-Oligocene
- High temperatures might have caused
 fast maturation as well

RESULTS & DISCUSSION – 1D BASIN MODELLING

Sedimentation Rates

- High burial rates due to the extensional regime initiated at Early-Mid Eocene might be the main generator of pressure mechanism as disequilibrium compaction
- 450 m/Ma sedimentation rate for the Karaagac Formation; consistent with the thickness measured as 2-3 km.
- High burial rates also resulted with fast maturation

RESULTS & DISCUSSION – MATURITY MAPS

• Vitrinite reflectance maps for both source rock scenarios

Good Source Rock

Poor Source Rock

- Vitrinite reflectance maps demonstrate areas at where Eocene shales of Karaagac Fm. are mature
- Same trend can be observed when the maturity maps are compared with the 1D modelling VR chart

• Maturation in terms of geological ages

Good Source Rock

Poor Source Rock

- Entrance to the early-oil window is Oligocene
- Both scenarios illustrate the presence of a potential kitchen area
- Kitchen area is restricted by Gokceada Volcanic Zone to the ESE

RESULTS & DISCUSSION – 3D PORE PRESSURE MODELING

PROSPECTIVITY

EGU-567– Ayberk Uyanik, 29th April 2021

- 1) This study introduces the discovery, presence and extent of Gokceada Volcanic Zone (GVZ) in the Northern Aegean Sea. An integrated workflow involving seismic & well log interpretation, post-drill ppfg & temperature analysis, conversion of interval velocities into a 3D pore pressure model and 1D basin modelling has been conducted for the first time.
- 2) Well log analysis has shown that temperatures increase towards GVZ while pressures behave as opposite.
- 3) Outcomes of 1D Basin modelling and 3D pore pressure models clearly indicate the effect of GVZ on the temperature & pressure conditions in the Southern Gokceada Offshore region.
- 4) Eventhough various methods applied in this study use different inputs, the results match and validate each other.
- 5) The findings of this study can act as a reliable foundation for pore pressure prediction & temperature analysis which are essential for the potential offshore exploration projects in the area.

THANK YOU