Phenology studies need to account for tissue temperature, not (only) air temperature

Marc Peaucelle, Josep Peñuelas, Hans Verbeeck

CL 2.8 28 April 2021

Temperature drives phenology in extra-tropical ecosystems

- \rightarrow Important role of Chilling and Forcing over the preseason
- \rightarrow Strong shift in phenophase induced by climate warming
- → Extension of growing season length

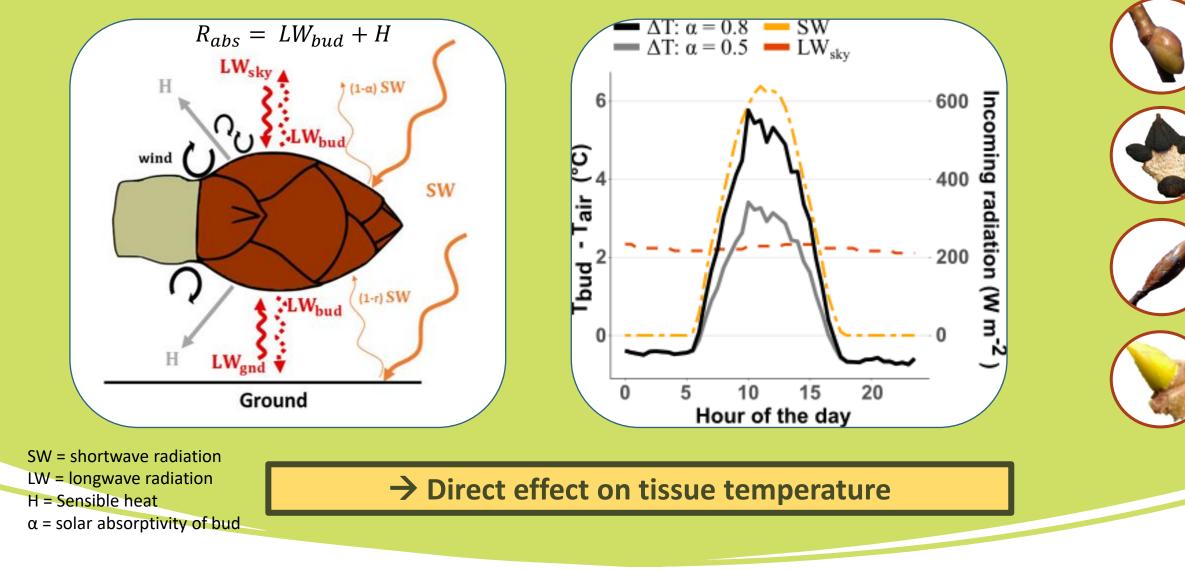
But

- \rightarrow Heterogeneity in response between species and regions
- \rightarrow Phenology might be co-limited by several other factors (light, water, nutrients...)

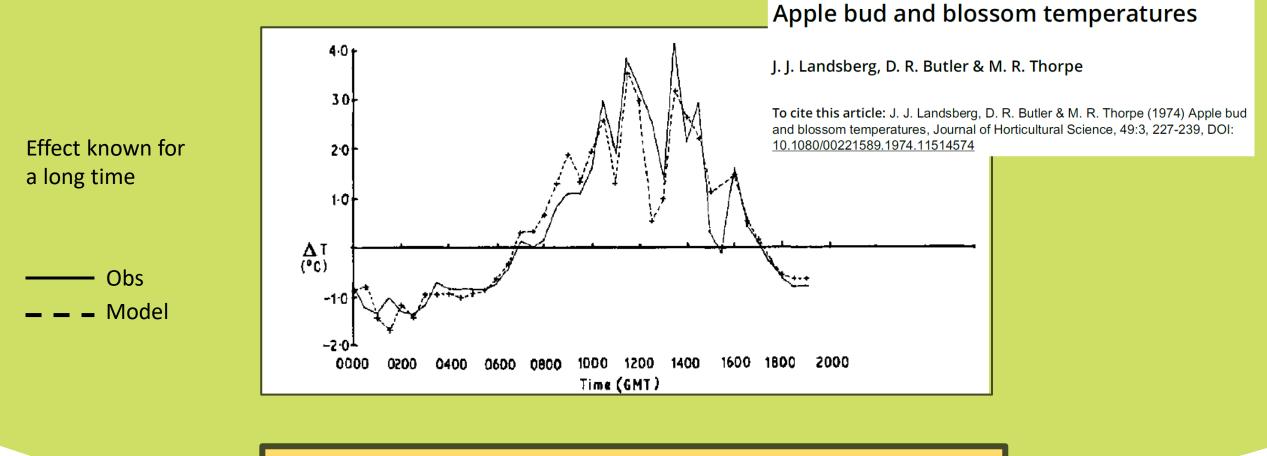
Light in phenology studies = Photoperiod

The effect of light is often considered by photoperiod and mainly daylength

- Direct sensing of the quantity and quality of light? (phytohormones?)
- Spectral composition?
- More sporadically, insolation sum as forcing.
- → Still debated, but recent studies suggest complex interactions between light and temperature



→ Assymetrical effect of day and night temperature

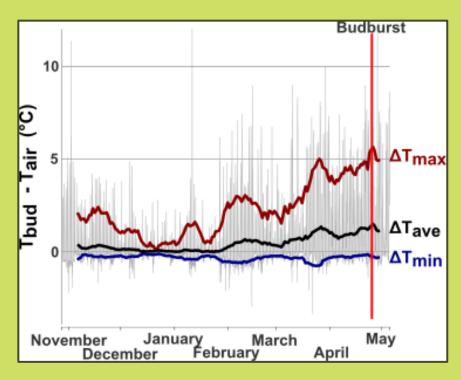


The forgotten effect of radiation and wind

The forgotten effect of radiation and wind

→ Direct effect on tissue temperature

What can we expect if we account for bud temperature in phenology studies?


→ No (or not enough) available data to answer directly this question
→ But we have energy budget models

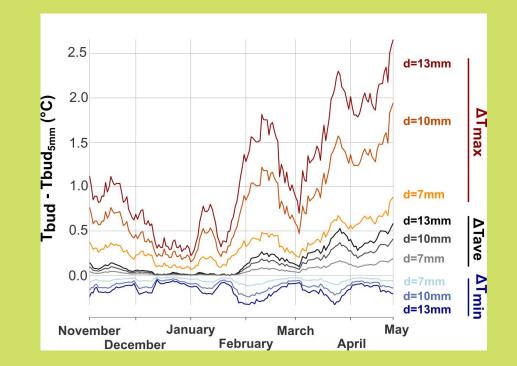
- application of existing **steady-state** energy model with site level and global meteorological data for **sun-exposed buds**

- exploration of temporal and spatial variability in bud temperature

What can we expect if we account for bud temperature in phenology studies?

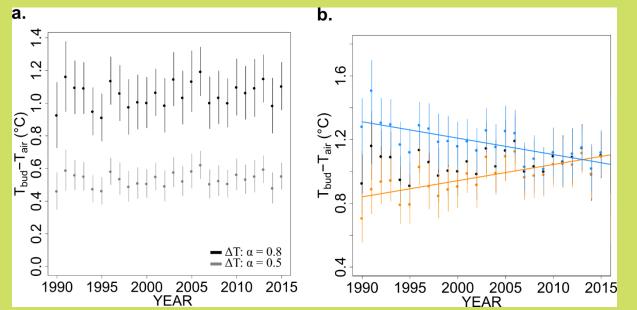

Model forced with 30min FLUXNET data (Hesse, France) Model with α = 0.8, bud diameter = 5mm

At the site level


- \rightarrow Non proportional Tbud and Tair trajectories
- ightarrow Higher variability in Tbud than Tair
- \rightarrow Different extremum in Tbud than Tair
- \rightarrow Depends on bud traits and local environment

What can we expect if we account for bud temperature in phenology studies?

Effect of ground albedo (r)


Effect of bud diameter (d) (!!! Steady-state model !!!)

What can we expect if we account for bud temperature in phenology studies?

PEP data, 5 species + CRUNCEP, 6h, 0.5°

At the regional level

 Δ T is expected to decrease (blue) over the period 1990-2016 for 356 sites*species (7%) and increase (orange) for 902 sites*species (18%) over a total of 5050 sites*species

!!! Steady-state model without species or site calibration !!!

 \rightarrow Higher variability expected after calibration and the use of a transient model

What can we expect if we account for bud temperature in phenology studies?

- → Existing models suggest that air temperature might be an imprecise and biased predictor of bud temperature (sun-exposed buds)
- \rightarrow Results from complex combination of biotic and abiotic factors
- → Differences in bud traits could partly explain observed inter-species differences in phenology
- → Differences in local environment could partly explain observed spatial variability in phenology

What can we expect if we account for bud temperature in phenology studies?

- → Existing models suggest that air temperature might be an imprecise and biased predictor of bud temperature (sun-exposed buds)
- \rightarrow Results from complex combination of biotic and abiotic factors
- → Differences in bud traits could partly explain observed inter-species differences in phenology
- → Differences in local environment could partly explain observed spatial variability in phenology
- \rightarrow Use energy balance model to disentangle the effect of photoperiod and temperature?

What can we expect if we account for bud temperature in phenology studies?

- → Existing models suggest that air temperature might be an imprecise and biased predictor of bud temperature (sun-exposed buds)
- \rightarrow Results from complex combination of biotic and abiotic factors
- → Differences in bud traits could partly explain observed inter-species differences in phenology
- → Differences in local environment could partly explain observed spatial variability in phenology
- \rightarrow Use energy balance model to disentangle the effect of photoperiod and temperature?
- \rightarrow Possible effect on senescence?

Widespread decline in winds delayed autumn foliar senescence over high latitudes

Chaoyang Wu^{a,b,1}[®], Jian Wang^{c,1}[®], Philippe Ciais^d, Josep Peñuelas^{e,f}[®], Xiaoyang Zhang^g[®], Oliver Sonnentag^h, Feng Tianⁱ[®], Xiaoyue Wang^{a,b}, Huanjiong Wang^{a,b}[®], Ronggao Liu^{a,b}, Yongshuo H. Fu^j[®], and Quansheng Ge^{a,b,1}

What can we expect if we account for bud temperature in phenology studies?

- → Existing models suggest that air temperature might be an imprecise and biased predictor of bud temperature (sun-exposed buds)
- \rightarrow Results from complex combination of biotic and abiotic factors
- → Differences in bud traits could partly explain observed inter-species differences in phenology
- → Differences in local environment could partly explain observed spatial variability in phenology
- \rightarrow Use energy balance model to disentangle the effect of photoperiod and temperature?
- \rightarrow Possible effect on senescence?

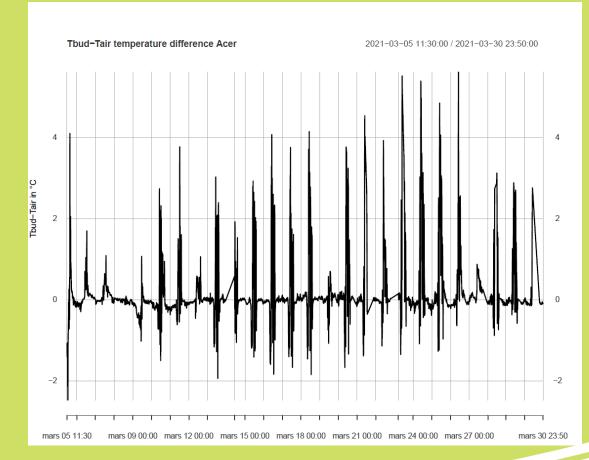
→We need bud/leaf temperature, traits, and micrometeorological data to answer these questions

Ongoing work

Measurement of bud temperature and microclimate in the field

- → Master Thesis of Cinta Sabaté Gil at CREAF
- → Field monitoring of bud temperature and microclimate at Prades Mountains, Catalonia (41°20'38″ N, 1°2'0″ E, 950 m a.s.l.)

15


Ongoing work

Measurement of bud temperature and microclimate in the field

→ 5 species: Acer monspessulanum,
Sorbus torminalis, Quecus Ilex,
Phillyrea latifolia & Arbutus unedo

T-type thermocouple

Preliminary results in line with the modeling approach

Ongoing work

Measurement of bud temperature and microclimate in the field

 \rightarrow Collection of buds for traits (spectral properties, size, ...)

 \rightarrow results coming soon \odot

Phenology studies need to account for tissue temperature, not (only) air temperature

Marc Peaucelle, Josep Peñuelas, Hans Verbeeck

CL 2.8 28 April 2021

Contact: **Marc Peaucelle**, postdoctoral researcher Marie-Curie Fellow Computational and Applied Vegetation Ecology (CAVELab) Ghent University

Marc.Peaucelle@ugent.be

