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Abstract 

 

The propagation of high-frequency elastic-flexural waves through an ice shelf was modeled 

by a full 3-D elastic models. These models based on the momentum equations that were written as 

the differential equations (model#1) and as the integro-differential equations (model#2). The 

integro-differential form implies the vertical integration of the momentum equations from the 

current coordinate z to the ice surface like, for instance, in the Blatter-Pattyn ice flow model 

(Pattyn, 2000, 2002). The sea water flow under the ice shelf is described by the wave equation 

(Holdsworth and Glynn, 1978). The numerical solutions were obtained by a finite-difference 

method. Numerical experiments were undertaken for a crevasse-ridden ice shelf (Freed-Brown et 

al., 2012) with different spatial periodicities of the crevasses. In this research the modeled 

positions of the band gaps in the dispersion spectra dependently on the spatial periodicities of the 

crevasses is investigated from the point of view of agreement of these positions with the Bragg’s 

law. The investigation of the dispersion spectra shows that different models reveal different 

sensitivities of the dispersion spectra (in relation to the appearance of the band gaps in the spectra) 

dependently on the spatial periodicity of the crevasses and on the crevasses depth.  

 

Field equations 

 

The two 3-D elastic models were considered in this work. 

 

Model#1. Basic equations. 

The momentum equations are (e.g., Landau & Lifshitz, 1986; Lurie, 2005) 

 

�











































































);,(),();()(;0

;
t

W
 

z

;
t

V
 

z

;
t

U
 

z

21

2

2
zzzy

2

2
yzyy

2

2
xzxy

yxhzyxhxyyxyLx

yx

yx

yx

sb

zx

yx

xx










   (1) 

 

where ik  is the stress tensor,   is ice density; U,V.W are two horizontal displacements and 

vertical displacement, respectively. The geometry of the ice shelf is assumed to be given by lateral 

boundary functions )(2,1 xy  at sides labeled 1 and 2 and functions for the surface and base 

elevations, ),(, yxh bs , denoted by subscripts s and b, respectively. 

The sub-ice water flow is described by the wave equation (Holdsworth and Glynn, 1978). 

The wave equation is 
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     (2) 

 

where w  is sea water density; ),(0 yxd  is the depth of the sub-ice water layer; ),,( tyxWb  is 

the vertical deflection of the ice-shelf base, and )),,(,,(),,( tyxhyxWtyxW bb  ; and 

),,(' tyxP  is the deviation of the sub-ice water pressure from the hydrostatic value. 

This model was considered, e.g., in (Konovalov, 2019, 2021). 

Model#2. Basic equations. 

 

The momentum equations in the model#2 result of the integration of the momentum equations (1) 

in vertical direction like in the Blatter-Pattyn ice flow model (e.g. Pattyn, 2000, 2002) 

The momentum equations are  
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   (3) 

 

The sub-ice water flow is described by the wave equation (2). 

 

Results 

 

The ice-shelf geometry 

 

 

Fig.1. The crevasse-ridden ice-shelf geometry and the cavity geometry that were considered in the 

numerical experiments. Spatial periodicity of the crevasses is equal to 2.0 km. 

 

The dispersion spectra 
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Fig.2. The dispersion spectrum obtained for the crevasse-ridden ice shelf by the model#1. 1 – 

Dcr=25m; 2 - Dcr=30m. (Dcr is the crevasses depth). Spatial periodicity of the crevasses is equal to 

2 km. Young's modulus GPaE 9 , Poisson's ratio 33.0 . 
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Fig.3. The dispersion spectrum obtained for the crevasse-ridden ice shelf by the model#2. 1 – 

Dcr=15m; 2 – Dcr=20m; 2 – Dcr=25m (Dcr is the crevasses depth). Spatial periodicity of the 

crevasses is equal to 2 km. Young's modulus GPaE 9 , Poisson's ratio 33.0 . 

 

 

 

 

The band gap location in the dispersion spectra 

 

 

 

 

Table#1. The first band gap location in the dispersion spectra obtained by the model#1 for 

different spatial periodicities of the crevasses (Tcr) and for different values of the crevasses depth 

(Dcr)  

 

Tcr(km)

\Dcr(m) 

20 m 25 m 30 m 35 m 40 m The first 

wavenumber 

derived from 

the Bragg’s law 

(km-1) 

1.8 km  doesn’t 

appear 

doesn’t 

appear 

1.723..1.7

55 km-1 

1.722..1.7

71 km-1 

1.745 

2.0 km  doesn’t 

appear 

doesn’t 

appear 

1.537..1.5

65 km-1 

 1.57 

2.2 km doesn’t 

appear 

doesn’t 

appear 

1.394..1.4

2 km-1 

1.41.. –  

km-1 

 1.43 

 

 

 

 

 

 

 

 

Table#2. The first band gap location in the dispersion spectra obtained by the model#2 for 

different spatial periodicities of the crevasses (Tcr) and for different values of the crevasses depth 

(Dcr) 

 

Tcr(km)

\Dcr(m) 

15 m 20 m 25 m 30 m The first 

wavenumber 

derived from the 

Bragg’s law 

(km-1) 

1.8 km 1.687..1.7 

km-1 

1.7..1.8 km-1   1.745 

2.0 km 1.715..1.745 

km-1 

1.723..1.746 

km-1 

1.552..1.742 

km-1 

 1.57 

2.2 km  doesn’t 

appear 

1.728 .. -  km-1  1.43 

 

 

Summary 

 

The performed numerical experiments reveal that the model#2 is more sensitive than the model#1 

in the context of the considered ice shelf response to the ocean wave impact. The distinction is in 

the threshold value of the depth of the crevasses penetration to the ice shelf, at which the band 

gaps that should appear accordingly the Bragg’s law, in fact, arise in the dispersion spectra 

obtained by the models. Essentially the model#2 based on the depth-integrated momentum 

equations provides the smaller threshold value, which depends on the spatial periodicity of the 

crevasses.  
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