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Filtration mathematical model

Earth surface

We use standard compositional modeling, which allows to
calculate three-phase (water, gas and oil) flows and account for

detailed fluid composition.

impermiable
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We use the system of
the conservation lows

for each component of
the HC mixture (CO,,
CH,, C,, Ci6,--.) and
water
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Water is immis-
cible phase

The fluid phase
equilibria are predicted
by the Soave-Redlich-Kwong

EoS with shift correction

We use Darsy’s law for
definition of effective
parameters of flow on
microscopic scales
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Injection strategies

the following strategies are

considered in detail

Problem statement

Strategy W 1-D simulations
water Injection well Producing well
i > is operated is operated
0 PV at constant rate at constant
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CO, I water
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Gas injection optimization

(costs are highlighted in red, net revenue from oil sale is highlighted in green)

Economic model
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—> Oil export

We calculate the
net present value
(NPV)

NPV(t) _ t Income —Costs dt’

0 (1+D)!/tds

D is the discount rate

What to maximize?
v" Net present value (NPV)
v Qil recovery

v' CO, storage efficiency (CSE)

Different injection
strategies
correspond these
optimization criteria
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Optimization criteria

Standard method:

NPV (t) - max, where t =t,,4

teng — the end of production time is regarded as a fixed presumed
guantity

Method used in this study:

We shown that in some cases

NPV (t) - max, where 0 <t < o (especially at low oil prices)

this method allows to increase NPV
by 5-10%

the end of production time is not fixed
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Optimizing CO, injection as a tertiary
recovery method
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NPV

CO, injection & WAG

Comparison of different strategies
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Gas injection is more efficient when
injection rate is fast, moreover gas

injection should be applied as a primary
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when injection rate is slow. y
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NPV map
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Influence of net revenue

The map of optimal strategies

* Water slug followed by continuous CO,
injection

* (O, slug followed by continuous water
injection

* Waterflooding

Net revenue
r., $/bbl

4 )
CO, injection should be applied as a

| | tertiary recovery method at oil price. CO,
0 0 1 2 3 injection should be applied as a primary
recovery method at a lower oil price.
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ARTICLE INFO

o e e e ¥ Variation of the end of production time allows to increase NPV by 5-
10% as compared to the case of a fixed production time

Immiscible gas injection strategies. In general, we aim at the net present value maximization, although the oil recovery and CO; storage
WAG process AN N . X ) co .
Optimization efficiencies are also estimated. Under certain assumptions, we reduce the number of parameters controlling
Priducu'on life selection of optimal strategy to just a few dimensionless quantities characterizing both physical and economic
Net present value processes. We show that the production life of oil fields should not be fixed in optimization studies, especially at
low oil prices. A significantly larger net present value can be achieved by varying the reservoir lifetime in
addition to the injection rates and volumes and other well controls. Herewith, the optimal strategy can differ
from that in the case of a presumed production time. We conclude that waterflooding is the optimal recovery /
method if the injection rate is low, whereas gas (WAG) flooding applied as a primary method and followed by
waterflooding is most optimal for large injection rates. Gas flooding applied as the tertiary recovery method is
most optimal for an intermediate range of the rates. In the latter case, gas injection should begin much earlier
than water breaks through to producing wells. Finally, we investigate how oil price influences the range of

The objective function, NPV, may have some local maxima.

parameters suitable for gas injection.

1. Introduction
1.1. Gas flood efficiency

Gas flooding is one of the widely used enhanced oil recovery (EOR)
methods (Lake, 1989; Thomas, 2008; Alvarado and Manrique, 2010).
Normally, gas injection, either continuous of alternating with water
injection (WAG), is applied to reservoirs depleted after waterflooding,
although there are also examples or gas injection applied as primary or
secondary methods. Different hydrocarbon (HC) and non-hydrocarbon
components can be injected to enhance oil recovery, and CO, is used
most often (Brock and Bryan, 1989; Blunt et al., 1993; Christensen et al.,
2001). Typically, CO, injection is combined with water injection in the
WAG process or a CO, slug is chased with water. Oil recovery efficiency
can be improved by ~ 10% by implementing such injection strategies.
CO injection can have additional merits as a sequestration strategy in
places with excess amounts of anthropogenic CO, (Jessen et al., 2005;
Holt et al., 2009; Hill et al., 2013; Hatchell and Benson, 2017; Far-
ajzadeh et al., 2020). Thus, the injection can also be aimed at reducing
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emissions and mitigation of the greenhouse effect.

Gas flooding involves physical phenomena at various pore and field
scales, which have been discussed in detail and reviewed by Lake
(1989), Pritchard and Nieman (1992), Johns et al. (2003), Johns and
Dindoruk (2013), among others. The efficiency of oil recovery by a gas
flood, Eg, is often estimated as

Ep=EvEp 1)

where Ey is the volumetric sweep efficiency and Ep is the microscopic
displacement efficiency (Ghedan, 2009; Verma, 2015). The quantity Ey
characterizes the fraction of hydrocarbon pore space that comes in
contact with injected gas. Unfavorable gas-to-oil mobility ratio, gravity
override and channeling can result in a significant volume of bypassed
oil and thus, poor sweep efficiency. The WAG process aims at reducing
these phenomena (Pritchard and Nieman, 1992; Sanchez, 1999; Jensen
et al., 2012; Johns and Dindoruk, 2013).

The quantity Ep characterizes the displacement efficiency solely at
the pore scale. One of the most critical parameters influencing Ej is the
minimum miscibility pressure (MMP). At such pressures a high micro-
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Consequently, robust optimization methods must be applied in the
optimization

In the case of gas injection as a tertiary method, the gas flooding
should begin earlier than the time of the water breakthrough into the
producing wells

Gas injection is more efficient at high injection rates. Moreover, gas
injection should apply as a primary method. Waterflooding is more
efficient if the injection rate is low.
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