

Role of the heliospheric current sheet (HCS) in high energy proton transport through modelling of historic GLE events

C. Waterfall¹ and S. Dalla¹

¹University of Central Lancashire, UK

Role of the heliospheric current sheet (HCS) in high energy proton transport through modelling of historic GLE events

- The heliospheric current sheet has previously been suggested to effect the transport of solar energetic particles within the heliosphere, e.g. Augusto et al. 2018, Battarbee et al. 2018
- Understanding more about the role the HCS has in the propagation of high energy particles is important for forecasting energetic events near Earth
- In this work we investigate the influence the HCS has on relativistic particle propagation with 3D test particle modelling of historic GLE events
- The 3D test particle model, SPEC (Dalla & Browning 2005), includes: drifts due to curvature and gradient of the Parker spiral and HCS drift important at the high energies typical of GLE events
- For each event, 3 million protons (300<E<1200 MeV) are injected at the flare location (10°x10° injection region) and allowed to propagate through the heliosphere for 72 hours

A total of 20 sub-GLE and GLE's from 1989-2017 are simulated

- The historic events are modelled both with and without a current sheet to see the effect on particle propagation at 1AU
- The events are chosen to ensure a range of current sheet configurations are covered
- In particular, the effect of the proximity of the flare (and Earth's footpoint) to the HCS is explored
- The model HCS is fit to the neutral line of Wilcox Solar Observatory r= $2.5R_{\odot}$ source surface map's with a sinusoidal function, the fit's parameters are then input into SPEC
- The following slide shows all 20 simulated events, followed by example results from modelling GLE 70

Example source surface map with HCS fit for 2nd May 1998: Star: Flare location Square: Earth footpoint Circle: meridian at time of flare Solid white line: neutral line Dashed line: HCS fit to SSM neutral line

Table of all simulated events

Event	GLE #	Flare class	CME v	Flare loc	Polarity	SPEC Vsw
29th September 1989	42	X9.0		S36W90	-	500
21st May 1990	47	X5.0		N35W36	+	500
23rd March 1991		X9.4		S26E28	+	500
25th June 1992	53	X3.9		N09W67	+	400
6th November 1997	55	X9.0	1556	S18W63	+	350
2nd May 1998	56	X1.1	938	S15W15	+	600
6th May 1998	57	X2.0	1099	S11W65	+	500
24th August 1998	58	X1.0		N35E09	+	400
15th April 2001	60	X13	1199	S20W85	-	500
28th October 2003	65	X17	2459	S16E08	-	700
4th November 2003		X17	2459	S16E08	-	700
20th January 2005	69	X7.1	2585	N14W61	-	600
7th September 2005		X17	1725	S11E77	-	400
13th December 2006	70	X3.4	1774	S06W23	-	600
7th March 2011		M3.7	2125	N30W47	-	350
23rd January 2012		M8.7	2175	N28W36	-	400
7th March 2012		X5.0	2684	N17E27	-	500
9th January 2014		X1.0	1830	S15W11	+	400
6th September 2017		X9.3	1571	S08W33	+	400
10th September 2017	72	X8.2	3163	S08W88	+	500

SPEC Vsw: solar wind speed used in SPEC

Polarity: + describes an A+ configuration where the magnetic field points outwards in the northern hemisphere and inwards in the south, with the opposite being true for -

Table 1: All events (GLE and sub-GLEs) modelled so far with SPEC.

Example results from SPEC for historic event: GLE 70 (1)

- GLE 70 has a flare close to the HCS with a small longitudinal separation between the Earth's footpoint and flare
- Lower plot shows the cumulative proton crossings at 1AU for GLE 70 simulation
- The flare is close to the HCS, allowing for drift along it to the East (West for an A+ configuration)
- A- polarity also causes gradient and curvature drift away from the HCS towards the poles (A+ leads to drift towards the CS)
- Corotation is included, causing the Westward extension of the crossing locations in all simulations

CR 2051

Source surface map: Star: Flare location Square: Earth footpoint Circle: meridian at time of flare Dashed line: HCS fit to SSM Polarity: A-

Simulation parameters: Injection location: [23,-6] Number of particles: 3 million E range: 300-1200MeV Power law index: 1.5 Simulation period: 72 hrs

Contours:

Inner Red: 1000 crossings Pink: 100 crossings Black: 10 crossings

Example results from SPEC for historic event: GLE 70 (2)

University of Central Lancashire

- Intensity profile at Earth's footpoint are produced for each event (for GLE 70 left figure)
- The intensity profile is shown for 3 high energy bands corresponding to HEPAD channels
- Model profiles can be compared to observations, e.g. HEPAD fluxes onboard GOES (right), Neutron monitor data, etc

GOES HEPAD profile

Exploring the largest recorded historic events: GLE 69

- Historic events with the largest HEPAD fluxes (and neutron monitor increases) are of particular interest in determining the influence of the HCS
- Simulations of two of the most powerful events, GLE 42 and GLE 69, indicate that the HCS had a prominent role in the propagation of energetic particles towards Earth at these times
- For example, the results of modelling GLE 69 (20 January 2005) are shown below
- Both the flare location △ and Earth's footpoint lie directly on the current sheet, but with a longitudinal separation >30° between them. The Earth's footpoint is advantageously located directly in the path of the drift along the HCS
- This leads to a simulated profile at Earth that has an agreeable shape and duration with the HEPAD profile

1AU cumulative crossing map for GLE 69

Intensity profile at Earth's location

GOES HEPAD profile

Exploring the largest recorded historic events: GLE 42

- Similar plots but for GLE 42
- Again, the flare and Earth's footpoint are located directly on the HCS, with a longitudinal separation >20 degrees
- The Earth is favourably located in the direction of drift along the HCS from the source location △ at [90,-26]
- The profiles are again comparable with the HEPAD fluxes during the event

1AU cumulative crossing map for GLE 42

Intensity profile at Earth's location

GOES HEPAD profile

Effect of removing the heliospheric current sheet

- The role the HCS plays in these powerful events is even more apparent when the HCS is removed from simulations
- The below plots show the results of removing the current sheet from the simulations for GLE 69 -
- When the current sheet is removed the direction of the particle propagation is away from the Earth's footpoint, producing zero counts at Earth's location
- The same is true for the other large event (GLE 42), however, the relevance of the HCS in our simulations varies - 1 depending on the configuration. The next slide again lists the modelled events, and indicates when we have found the HCS to be necessary

No particle counts at Earth

Table of all historic events modelled with SPEC

Event	GLE #	Flare class	CME v	Flare loc	Polarity	SPEC Vsw	CS matter?	
29th September 1989	42	X9.0		S36W90	-	500	Yes	
21st May 1990	47	X5.0		N35W36	+	500	Yes	
23rd March 1991		X9.4		S26E28	+	500	Yes	
25th June 1992	53	X3.9		N09W67	+	400	No	
6th November 1997	55	X9.0	1556	S18W63	+	350	Yes	
2nd May 1998	56	X1.1	938	S15W15	+	600	Yes	
6th May 1998	57	X2.0	1099	S11W65	+	500	Yes	
24th August 1998	58	X1.0		N35E09	+	400	Yes	
15th April 2001	60	X13	1199	S20W85	-	500	Yes	
28th October 2003	65	X17	2459	S16E08	-	700	No	
4th November 2003		X17	2459	S16E08	-	700	No	
20th January 2005	69	X7.1	2585	N14W61	-	600	Yes	
7th September 2005		X17	1725	S11E77	-	400	No	
13th December 2006	70	X3.4	1774	S06W23	-	600	No	
7th March 2011		M3.7	2125	N30W47	-	350	Yes	
23rd January 2012		M8.7	2175	N28W36	-	400	No	
7th March 2012		X5.0	2684	N17E27	-	500	Yes	
9th January 2014		X1.0	1830	S15W11	+	400	Yes	
6th September 2017		X9.3	1571	S08W33	+	400	Yes	
10th September 2017	72	X8.2	3163	S08W88	+	500	Yes	

CS matter?:

Yes: presence of HCS in simulation effects the model profile at Earth's footpoint No: HCS makes no difference to model profile

Table 1: All events (GLE and sub-GLEs) modelled so far with SPEC.

The role of the HCS in simulations of historic events

- According to our simulations, the HCS plays an important role in high energy proton propagation in 75% of our simulated GLEs
- The HCS has a most dominant role in those events where both the Earth's footpoint and flare are situated directly on the current sheet with some degree of longitudinal separation between them
- The historic events with this configuration are some of the largest events on record GLE 42 and 69
- Other 'smaller' GLE events where the HCS is still relevant have configurations where the Earth and/or flare are slightly further (>5 degrees) from the current sheet
- Events where the HCS makes no difference are primarily when the flare is far (>30 degrees) from the current sheet, or the separation between the flare and Earth footpoint is <10 degrees
- In conclusion, the majority of simulated events have an Earth/flare configuration relative to the current sheet that necessitates the inclusion of the HCS
- Our simulations enable us to produce model profiles at Earth that can be compared to existing HEPAD and neutron monitor observations, as well as for use in developing future forecasting models