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Context — 1/3

In an atmospheric model (aimed at deriving tendencies for
atmospheric state variables x):

ox

Where D is the dynamics (resolved processes) of the model, P are
the physical parameterizations (unresolved scale processes).

The machine learning (ML) problem of learning physical
parameterizations can be expressed:
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Context — 2/3

Once implemented inside the model, most of current Al-based
parameterizations faces numerical instabilities. After a few
integrations, the model explodes.
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Figure 2: Online skill of the NN and RE. Compares the forecast accuracy in terms of RMSE for
precipitable water () and 500 mb geo-potential height (c). The respective global averages are shown

in (b) and (d).

Figure 1: An example of divergence with an Al-based parameterization scheme. Brenowitz et al., 2020 [3]
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Context — 3/3

Currently, no toy model is able to replicate such numerical
instability issues. In particular, Lorenz toy models are not complex
enough to manifest any instability.
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The need for a more realistic toy model

Parameterizing sub-grid processes is the big challenge for climate modeling. Modern machine
learning approaches could be one way to make real progress. Over the last two years, first studies
(here and here and here) have demonstrated that it is generally feasible to build a ML
parameterization. But, as I've summarized in my recent paper on online learning, there are several
fundamental obstacles to overcome before ML parameterizations can actually improve weather
and climate predictions. Stability, physical consistency and tuning are just some of them.

[.-]

All of these challenges cry out for an intermediate step between L96 and full-complexity models.

https://raspstephan.github.io/blog/lorenz-96-is-too-easy/
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Objectives

Objectives.

1. Development of an extended version of Lorenz'63 (hereafter,
L63) toy model replicating instability issues when system
dynamics are learnt with neural networks (hereafter, NN) ;

2. Understanding the origin of this instability + solution to
address it.
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Code & notebook

Code & notebook: https://github.com/blankaBalogh/eL63.

& blankaBalogh / eL63  Unwateh ~ 1
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"Embedded" Lorenz'63 model.
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The purpose of the notebook is to give a quick outline of the "embedded" Lorenz'63 model, as described in A toy

model to investigate stability of Al-based dynamical systems (2020), submitted to Geophysical Research Letters. AR
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Learning L63 — 1/3

Objective. Learning L63 dynamics with NNs.

x; = o(x2 — x1),
x2 = x1(p — x3) — x2, (2)
X3 = x1x2 — X3

With (o, p, B) fixed, the ML problem of learning L63 can be

written:

x = f(x) (3)
In the following, (o, p, 8) values are set to (10,28,8/3).
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Learning L63 — 2/3

Generating an 'orbit’ of length 500 Model Time Units (MTU ; 1
MTU = 20 x dt where dt = 0.05) or 10* integrations

Building the learning sample:
o Timeseries of L63 state variables: x(t)
@ Associated time derivatives: x(t) = f(x(t))

In the following, a learning sample will be noted:

[x] = {(Xnyf(xn)}nzlpu,N

with x, = x(t,).
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Learning L63 — 3/3

Model: "functional 1"

Learning of (3) is performed
. ) Layer {type) Output Shape Param #
with a very simple NN; the re- ante (imarzoren Tlnare, 7 ;

sulting function is f such that: dense {Dense) None, 256) i
dense_1 (Dense) (None, 128) 32896

/.\ o~ dense_2 (Dense) (None, 128) 16512

X = f(X) (4) dense_3 (Dense) (None, 128) 16512

dense_4 (Dense) (None, 128) 16512

dense_5 (Dense) (None, 128) 16512

dense_6 (Dense) (None, 64) 8256

Loss function: mean squared preey ) e T

error (M S E) . predictions (Dense) (None, 3) 99

Total params: 118,403

R? score over test dataset: Nortrainable paramss 5
0.999
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Validation strategy — 1/2

The validation strategy consists in generating long orbits of length
1000 MTU or 20.10% integrations, by integrating f. Validation
orbits generated with the trained NN-model will then be compared
with the direct integration of L63 equations.

xi(t1) Xa(t1) Xi(t2) Xi(tn)

X2(t1) Eq. L63 Xz(h) Intégration Xzaz) Eq. L63 Intégration Xz(tN)
f (RK4) f (RK4)

xa(t1) Xa(t1) Xs(t2) Xa(tn)

xi(t1) )%1(1‘1) X1(t2) Xi(tn)
NN- Intégration NN- Intégration

Xaft1) D’eiﬂcr Refts) Roftz) D(eli/d () —  Xeftn)
f (RK4) y (RK4)

Xaft) Xaft)) Xa(t2) Xa(tn)

Figure 2: Validation strategy.
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Validation strategy — 2/2

(i) Lorenz '63 orbit (ii) NN-based Lorenz '63 orbit

time (MTU)

Figure 3: Validation orbits resulting from the integration of: (i) L63 equations and (ii) of the NN model that learnt
eq. (3). Only the first 100 MTUs are represented.
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Conclusion — Learning L63

Fit to learning sample is great (see validation R2 score), but the
resulting NN model does not allow the study of instabilities.

Need of a more complex toy model to study instabilities
encountered when developing NN-based parameterizations.
How to conceive a higher dimension (d > 3) version of L63 ?
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'embedded’ Lorenz'63 model (eL63) — 1/2

Objective. Extend L63 to dimension d > 3 to create a toy model
replicating numerical instabilities.

1. z € B,: dynamics are easy to express explicitly.

21 = (7(22 - Zl),

Zy=2z(p— z3) — 2,

. (5)
Z3=z212) — fz3,
zj = —kz;, Vj>3.
For sake of simplicity, K = 1 hereafter.
2. x € By ('learning’ space) after random rotation P
x = Pz (6)
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'embedded’ Lorenz'63 model (eL63) — 2/2

(i) Embedding : R3 s R?

(1(t), 22(0), 23(0)) 1= Z(0) = (21(8), 25(0), 25(0), ., 24(8))

T M (, B

N (-

j T

EnJEN

(ii) Random rotation : R? s R?

X(t) = (1(t), 2o(t), w3(t), ..., 2a(t)) = PZ(t), P € R

LMM”W”WM’ WW“"MWIJ\A(MW‘A },mmwmnw!ﬁfll‘fww

n l |

Figure 4: 'embedding’ of L63 model. The NN will only see variables from By, after applying 'hidden constraint’ P.
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Learning eL63

@ Learning is performed in By, in the same configuration than it
has been presented for 'original’ L63 model (e.g., NN
architecture, metrics, learning sample size). The resulting
NN-dynamics function is noted fo,b

e Validation R? score: > 0.999.

Stability criterion.
A validation orbit is considered 'stable’ if:
V1<i<d, V1<n<N=1000MTU,

m; —3(M; — m;) < x' < M; +3(M; —m;)  (8)

where m;, M; maximal and minimal values of variables at
coordinate / in the validation orbit.
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Evaluation of the NN model — 1/3

21(t) 24(1)
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Figure 5: Example of a diverging validation orbit, generated by integration of tendencies from ?D,b, The subsequent
NN model of eL63 will be assessed in 13, facilitating comparison without the random rotation P.
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Evaluation of the NN model — 2/3

'Global’ stability of the model is assessed, with dimension d fixed,
as described below:

1. Train 100 different NNs (= 100 different rotation matrices P):
100 £, models.

2. With each ?;,b model, generate validation orbits of length
1000 MTUs from 30 different initial conditions.

3. Apply the stability criterion (see previous slide) to assess
stability over 100 x 30 = 3000 validation orbits.
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Evaluation of the NN model — 3/3
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Figure 6: Percentage of stable validation orbits as a function of the embedding dimension d. Validation orbits were
generated following the steps described previously.
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Conclusions — '"Embedded’ L63 model

1. Even with minimal embedding (e.g., d = 4), 40% of
NN-generated eL63 validation orbits are unstable (or
exploding).

2. Stability decays quickly when d increases.

3. With d > 6, none of the validation orbits are stable.

elL63 is an extended version of L63, which allows the replication of
numerical instabilities when learned by (feedforward) NNs upon a
single orbit.

How to make NN models of eL63 stable ?
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A new learning sample 7 —1/2

~

forb is NoOt precise enough in some regions of the eL63 phase space:
could the instability be a problem of sampling ? |s it possible to
prevent instabilities by designing a specific learning sample ?
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A new learning sample 7 —2/2

The new learning sample is built with Latin Hypercube Sampling
(LHS). LHS sampling is performed in B,.

Figure 7: The first 3 components of the state variable z from the 'orbital’ learning sample (green) and the 'LHS’
learning sample (purple). Both samples contains 10* individuals.
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Fitting NN to the LHS sample

@ NN is fitted to the LHS learning sample in the same
configuration as previously described (e.g., same NN
architecture, same metrics). The size of the LHS learning
sample matches those of the orbital learning sample.
However, train/test split is done on a random partition basis.

@ The resulting NN model is noted fLHS.

e Validation R?: ~ 0.997...
fit is slightly less accurate than in the previous cases.
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Validation

Validation. 100 EHS, 30 random initial conditions.

100% 100% 100% 100% 100% 100% 100% 100%
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Figure 8: Percentage of stable validation orbits, generated with £, (green) and ;s (purple). NN model is
stabilized when fitted to the LHS learning sample (regarding the stability criterion described above).
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Conclusion

@ L63 model is not complex enough to manifest numerical
instabilities when its dynamics is learnt with NNs.

@ 'embedded’ L63 model, an extended version of L63 to d > 3
succeeds in replicating numerical instability issues, when the
NN model is fitted to a learning sample consisting in a single
orbit.

@ The NN model is stabilised (with d < 11 at least) when fitted
to a specifically designed learning sample. This learning
sample was built with LHS.

An LHS sampling is difficult to perform in the case of climate
models. This study underlines how much the learning sample is
important to grant stability to NN models.
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