Ensemble-based data assimilation of volcanic aerosols using FALL3D+PDAF .
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> Uncertainties in key parameters such as column height
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meteorological fields, represent a major source of error in Data Assimilation Model Tt
forecasting airborne volcanic ash - ,
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> Data Assimilation is one of the most effective ways to
reduce the error associated with the forecasts through
the incorporation of available observations into
numerical models.
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> Case study based on an idealized eruption of Etna, run on Irene | Obseryations
supercomputer ot CEA/TGCC.
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> Local Ensemble Transform Kalman Filter (LETKF), a localised
version of ETKF described by Hunt et al. (2007)
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> A common approach to assessment of data assimilation e T g ot
methods is to perform twin experiments: L ST R . 4
A truth state is generated by the model to define a reference
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Synthetic observations are generated by adding random
perturbations to the true state (non-correlated observation
errors)
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