Application of Dissolved Organic Carbon Runoff Model Considering Soil Infiltration and River Runoff Processes in Multiple Forested Watersheds

Kazunori EBATA¹, Yutaka ICHIKAWA², Hiroshi ISHIDAIRA³, Yoshitaka MATSUMOTO¹, Kei NISHIDA³

¹Department of Civil Engineering, National Institute of Technology, Toyota College
²Graduate School of Engineering, Kyoto University
³Interdisciplinary Centre for River Basin Environment, University of Yamanashi

Dissolved organic carbon (**DOC**) is an essential biogeochemical component of water quality in a forested watershed

The export of carbon from forest river is thus closely related to environmental issues at both **global** scale and **local** scale

How has the DOC load been estimated?

	Advantage	Disadvantage	
Empirical model	Easy to calculate	Spatiotemporal variation	Hinton et al. 1997)
Process-based model	High accuracy	Lots of Input data	(Futter et al. 2007)

General objective

To develop a simple model for estimating the DOC runoff load at short-term(**event**) scale and long-term (**seasonal**) scale.

Specific objective

- 1. To characterize the DOC variation with long-term monitoring data
- 2. To establish a DOC runoff model considering soil and hydrologic processes
- 3. To validate the applicability of the DOC model to other area

Methodology

- Mizugaki Experimental Watershed
- Elevation: 1175 ~ 1555 m
- Vegetation: Japanese larch plantation forest
- Bedrock: Granitic rock
- Sampling period: MD(2004-2016), K2(2009-2016)

MD:98ha

L3:15ha

影牆山試験流域

Model structure

DOC load: Storm flow impact (2004-2016)

Upper 27% & 47% of high flows were responsible for 50% of the total DOC load at MD and K2, as respectively

Topographic characteristics (TI and connectivity b/w wetland & channel) distinctively controlled the storm flow contribution.

"DSA" is a useful for the interpretation of DOC runoff processes

	Mizugaki	Miuchi	
Altitude(m)	1150 - 2142	657 - 1126	
Aroo	15ha(L3), 98ha(MD),	204ha	
Alea	1798ha(K2)	20411a	
Vagatation	Quercus crispula, Betula	ander aurrage	
vegetation	platyphylla, larch, Abies firma	ceuar, cypress	
Rock type	granitic rock	metamorphic rock	

 TI was varied from between MD and K2

Base flow			Storm flow					
Year	Mear load(kg	n DOC g/ha/yr)	PBIAS(%)	Duration (day)	Mean DOC load(kg/ha/yr)		PBIAS(%)	Duration
	Obs.	Sim.			Obs.	Sim.		(day)
2015	0.019	0.024	-22.4	212	0.069	0.061	11.4	153
2016	0.021	0.033	-60.3	231	0.069	0.072	-3.3	135
2017	0.017	0.034	-73,1	264	0.118	0.076	24.3	101

DOC loads were estimated with less than 100 % error

Year	Annual DOC lo		
	Obs.	Sim.	PDIA5(%)
2015	14.7	14.5	1.5
2016	14.2	17.4	-22.7
2017	16.4	17.4	-5.8

Annual DOC loads were between MD and K2

DOC load impact at two watersheds

Cumulative percentage of discharge duration(%)

Assessment of the Storm flow contribution was applicable for different watershed(Mizugaki & Miuchi)

- The originally developed numerical model, with combination of soil DOC concentration variations and the DOC source area variations controlled by rainfall, demonstrated the usefulness to improve the DOC load estimation
- The contribution of the high flow period to the overall DOC runoff from forest river was first demonstrated quantitatively through modelling methodology.