Structure of The Continental and Permo-Triassic Oceanic Lithosphere Beneath The Eastern Mediterranean Sea, from Stochastic Surface-wave Inversion With Wide-angle Data Constraints

Amr El-Sharkawy^{1,2}

T. Meier¹, C. Hübscher³, S. Lebedev⁴, A. Dannowski⁵, H. Kopp^{1,5}, J. Behrman⁵, A. McGrandle⁶, M. Hamada²

¹ Institute of Geosciences, Christian-Albrechts Universität zu Kiel, Germany
 ² National Research Institute of Astronomy and Geophysics (NRIAG), Egypt
 ³ Institute of Geophysics, University of Hamburg, Hamburg, Germany
 ⁴ School of Cosmic Physics, Dublin Institute for Advanced Studies, Dublin, Ireland
 ⁵ GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
 ⁶ Big Anomaly, Emberton, United Kingdom

vEGU21, April 19th - 30th, 2021

Topographic map of the eastern Mediterranean region with the age distribution of the oceanic lithosphere

Distribution of the teleseismic earthquakes

Colour coded ray path coverage. Colours indicate the number of processed events per path. Triangles indicate the location of the seismic stations.

Period = 30 s, average velocity 3.788 Km/s

vEGU21

19th - 30th April, 2021

El-Sharkawy et al., in Review

<u>Vp models</u>

(from seismic refraction)

Ionian Sea (Dannowski et al., 2019) *Levant Basin* (Netzeband et al., 2006)

Velocities are given in km/s

CS: Carbonate Sediments,
LC: Lower Crust,
ME: Messinian Evaporites,
MS: Mesozoic Sediments,
MSM: Medina Seamount,
PQ: Plio-Quaternary Sediments,
UC: Upper Crust,
UM: Upper Mantle.

1D shear wave models from the inversion of the dispersion curves using the Particle Swarm **Optimization (PSO) algorithm**

El-Sharkawy et al., in Review

6

6

4

<u>*Vp*</u> (from seismic refraction), <u>*Vs*</u> (from surface wave inversion) and <u>*Vp/Vs crustal models*</u>

<u>Vs</u> models of the upper mantle (from surface wave inversion)

<u>3D Vs</u> model of the Mediterranean "MeRE2020", (map view at 100 km depth)

LibS: Libyan Sea

MES: Malta Escarpment

El-Sharkawy et al. (2020)

9

LevB: Levant Basin

19th - 30th April, 2021

<u>3D Vs</u> model of the Mediterranean "MeRE2020"

Lateral resolution locally < 100 km

ArP: Arabian Plate COB: Continent-Ocean Boundary DSF: Dead Sea Fault EMOML: Eastern Mediterranean Oceanic Mantle Lithosphere ESM: Eratosthenes Seamount HB: Herodotus Basin IonS: Ionian Sea LCML: Levant Continetal Mantle Lithosphere LevB: Levant Basin LibS: Libyan Sea MEA: Middle East Asthenosphere MES: Malta Escarpment WMA: Western Medietrranean Asthenosphere

El-Sharkawy et al. (2020)

vEGU21

El-Sharkawy et al., in Review

Conclusions

- Well resolved 1-D Vs models of the Levant Basin and the Ionian Sea down to 300 km depth
- Constraining the Vp/Vs ratios in the crust and the Moho depth by combining surface wave inversion with seismic refraction data
- The Vp/Vs ratios point to oceanic Ionian (>1.8) and continental Levant (<1.8) crystalline crust, respectively
- Lithospheric thickness is ~70 km beneath the Levant Basin and about 180 km beneath the Ionian Sea
- The EMOML shows an eastward increase of its thickness with maximum (~200 km) at the Libyan-Herodotus Basin
- Triassic (Ionian) vs Permian and Carboniferous oceanic lithosphere (Libyan Sea and the Herodotus Basin) in the EM
- The EMOML was subject to a continuous cooling and thickening in contrast to prediction by the thermal plate model
- The oceanic lithosphere does not extend further to the east of the Herodotus Basin.
- A transition to continental lithosphere is clearly outlined from high pass filtered gravity anomalies in agreement with the magnetic anomalies (Granot, 2016)
- The continent-ocean boundary (COB) in the eastern Mediterranean Sea is therefore outlined roughly at about 31° E
- In the area from the COB to the Eratosthenes Seamount, shear wave tomography and long wavelength gravity anomalies indicate about 150 km thick continental lithosphere beneath the westernmost parts of the Levant Basin
- Only about 70 km thick lithosphere beneath the eastern part of the Levant Basin
- Focusing of lithospheric deformation and crustal seismicity along the prominent Dead Sea Fault occurs in thinned and weak continental lithosphere above an area of asthenospheric upwelling

Supplementary materials

