Identifying and quantifying the impact of non-climatic effects on the water cycle in a semi-arid environment

EGU 2021

Julie Collignan

Jan Polcher, Pere Quintana Segui

Laboratoire de Météorologie Dynamique (LMD)

Budyko framework

Budyko hypothesis: simplified river flow model

Budyfo framework:

Two factors limiting evaporation: *Energy* and *Water supply*

• Analytical approximation: Fu's equation:

$$\frac{ET}{P} = 1 + \frac{PET}{P} - \left(1 + \left(\frac{PET}{P}\right)^{nu}\right)^{\frac{1}{nu}}$$

Using the equilibrium hypothesis $\Delta S = 0$ in the water balance equation:

$$Q = P * \left(1 + \left(\frac{PET}{P}\right)^{nu}\right)^{\frac{1}{nu}} - PET$$

• The watershed parameter Nu

$$\frac{ET}{P} = 1 + \frac{PET}{P} - \left(1 + \left(\frac{PET}{P}\right)^{nu}\right)^{\frac{1}{nu}}$$

- \rightarrow Adjusted over an area and a time period
- Parameter reflecting watersheds characteristics

(Some climatic characteristics, vegetation cover, soils...)

Includes effects of human activity

• Hypothesis for this parameter

 \rightarrow Variations of climate characteristics <<

changes due to human activities (irrigation, land cover changes...)

Method

• Calculation of the watershed parameter

ORCHIDEE Model

Calculate ET and Q over each watershed

• Calculation of the watershed parameter

• Calculation of the watershed parameter

Streamflow from observation stations

- GRDC database
- Specific database over Spain

• Calculation of the watershed parameter

Streamflow from observation stations

- GRDC database
- Specific database over Spain

• Calculation of the watershed parameter

Results

Streamflow \rightarrow highly climate dependent and high interannual variability

➔ Focus on the analysis of the watershed parameter, partly freed from climate dependence

Comparing "climatic" Nu_c to "total" Nu_t

Example: 6298007: Jalon : Ateca, \rightarrow Focus on Spain stations Lon: -1.8006523° Lat: 41.32295° Nus GSWP3, average Watershed parameter Nu_t 2.4 Nus GSWP3 Nus Obs + GSWP3, average Nus Obs + GSWP3 Watershed parameter Nu_c N 2.2 \rightarrow Average \rightarrow Evolution with a 11-years sliding time-range 1900 1920 1940 1960 1980 2000 Watershed parameter from 1900 to 2020

Comparing "climatic" Nu_c to "total" Nu_t

Example: 6298007: Jalon : Ateca, \rightarrow Focus on Spain stations Lon: -1.8006523° Lat: 41.32295° Nus GSWP3, average Watershed parameter Nu₊ 2.4 us GSWP3 Nus Obs + GSWP3, average Nus Obs + GSWP3 Watershed parameter Nu_c Ñ 2.2 \rightarrow Average \rightarrow Evolution with a 11-years sliding time-range 1900 1920 1940 1960 1980 2000 Watershed parameter from 1900 to 2020

- No distinctive trend for Nu_c calculated with climatic data only
- For lots of basins over Spain: trend in Nu_t calculated with observations, especially over last 30 years
 - \rightarrow changes in basin characteritics, other than climatic trends

Comparing "climatic" Nu_c to "total" Nu_t

dNu

Example: 6298007: Jalon : Ateca, \rightarrow Focus on Spain stations Lon: -1.8006523° Lat: 41.32295° Nus GSWP3, average Watershed parameter Nu_t 2.4 -Nus GSWP3 Nus Obs + GSWP3, average Nus Obs + GSWP3 Watershed parameter Nu_c N 2.2 \rightarrow Average \rightarrow Evolution with a 11-years sliding time-range 1900 1920 1940 1960 1980 2000 Nu total sloaps, 11 years time slide 0.00 Sloap of *Nu*, higher than 95% of all sloaps of Nu_c -0.021920 1980 1900 1940 1960 2000 15 years

Maps: Nu_t sloaps outside of 95% range of Nu_c sloaps

Red: Rising sloap of Nu_t higher than 95% of all sloaps of Nu_c Blue: Droping sloap of Nu_t higher than 95% of all sloaps of Nu_c

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

1970-1980: Share Nu_obs vs Nu_mod

1970 - 1980

Yellow: Sloap of *Nu*_t in range of sloaps of *Nu*_c

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 1960-1970: Share Nu_obs vs Nu_mod **1960 - 1970**

1940-1950: Share Nu_obs vs Nu_mod 1940 - 1950

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1990-2000: Share Nu_obs vs Nu_mod

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

1950-1960: Share Nu obs vs Nu mod

1950 - 1960

How to explain the variations of the watershed parameter?

Hypothesis

- Rising value of the parameter for given PET and P (climatic variables)
 - = Increase of apparent ET
 - = Decrease of apparent runoff (streamflow)
- Water uptakes not explain by climate variables variation only
- →Hypothesis:
 - Irrigation
 - Dams?
 - Water transfers towards other basins
 - Increase in vegetation cover

Hypothesis

- Decreasing value of the parameter for given PET and P (climatic variables)
 - = Decrease of apparent ET
 - = Increase of apparent runoff (streamflow)
- Water inputs not explain by climate variables variation only

→Hypothesis:

- Glacier melting
- Water transfers from other basins
- Decrease of vegetation cover
- Pumping from ground water
- Soil sealing
- River management

Keys findings

Impact of anthropogenic changes?

Climatic variations of the watershed parameter smaller than variations due to missing processes (anthropogenic changes...)

- Raising variations correlated to construction and development of water regulation infrastructures (volume of water stored in dams...)
- Apparent concordance in space and time with irrigation development and groundwater uptake (Guadiana basin)
- Test of the model with forced evolving vegetation cover: very little impact on variation of the watershed characteristics
 - \rightarrow Non-significant effect of land cover change compared to other factors
- Difficulties to separate and attribute impacts: confounding effects of different factors over same areas
 - → need to include missing processes in models to separate and test effects of each factors independently