Thermal evolution of terrestrial planets with 2D and 3D geometries

Fleury Aymeric, Plesa Ana-Catalina, Hüttig Christian, 2021

Spherical annulus geometry

- Addition of a dimension to an initial 2D geometry
- Better approximation of the 3D geometries
- Faster computing time enabling coverage of a broader range of parameters
- High resolution that would be to expensive in 3D simulations

Hüttig et al., 2013

Hernlund & Tackley 2008

Benchmarking with StagYY and the CHIC code

- Steady states simulations
- Boussinesq approximation
- Purely basal or alternatively purely internal heating

	F	RMS velocity		Nusselt number			
Ra	CHIC*	STAGYY**	Gaia	CHIC*	STAGYY**	Gaia	
1e 4	39,87	37,7	42,26	4,39	4,18	4,5	
1e 5	174,1	160	158	7,61	7,39	8,67	
1e 6	719,3	640	680	16,53	14,4	14,6	
Ra / H	F	RMS velocity		Average mantle temperature			
1e4 / 3,4	25,09	23,5	22,36	0,295	0,308	0,275	
1e5 / 6,6	97	78,5	87,8	0,369	0,349	0,341	
1e6 / 14	340	265	283,9	0,385	0,35	0,351	

*Noack et al., 2015

** Hernlund and Tackley., 2008

Benchmark cases of Zhong et al., (2008)

• Comparison of 3D, 2D spherical annulus, and 2D cylinder geometry using the benchmark cases form Zhong et al., (2008).

		3D Zhong 2008 values	values study	Annulus	Cylinder
	T mean	0,22	0,22	0,26	0,38
D1	Vrms	31,09	31,06	31,95	36,22
BT case	Nu top	3,63	3,60	4,06	4,15
	Nu bot	3,60	3,60	4,10	4,15
	T mean	0,33	0,29	0,37	0,41
DE coco	Vrms	22,29	22,08	20,77	32,88
B5 Case	Nu top	2,68	2,79	3,34	2,93
	Nu bot	2,66	2,79	3,38	2,92
	T mean	0,59	0,58	0,57	0,41
	Vrms	158,70	139,82	142,40	32,83
B9 Case	Nu top	3,48	3,38	2,98	2,93
	Nu bot	3,52	3,39	3,01	2,92

Comparison of 3D and 2D geometries

 Systematic comparison between 2D geometries and 3D cases for various Rayleigh numbers, aspect ratios, as well as heating modes

Thermal evolution of Mars, Mercury and the Moon

• Thermal evolution models using a temperature dependent viscosity, EBA, mixed heating, decay of radioactive heat producing elements, and core cooling.

Conclusion

- The implemented spherical annulus geometry enables us to better approximate the 3D simulations
- The annulus fares better than the cylinder; especially for the low aspect ratio/high Ra configurations
- Reproducing closely the results of previous
 The annulus geometry is reproducing more accurately the thermal evolution of (Hernlund and Tackley., 2008 & Noack et al., 2015 & Zhong et al., 2008)
 Reproducing closely the results of previous
 The annulus geometry is reproducing more accurately the thermal evolution of a 3D-planet than a cylindrical one

