EGU21- 7404

UGA

Measuring floating ice thickness with optical fibers and DAS, a test case study on a frozen mountain lake

O. Coutant, Nziengui D., Moreau L., Boué P., Larose E., Cimolino A. @ ISTerre-UGA

Two experiments were conducted during winter 2020 and 2021 on a 400m long frozen lake (elev. 2000m) using two different settings:

2020: fiber buried in snow / 2021: fiber installed on early ice with a drone

Objectives:

- test the feasibility of seismic recording on floating ice using DAS and optical fiber
- Seismic recording of trapped waves in the ice guide allows to measure fundamental parameters of the ice layer
 - E: young modulus + H 🔅 resistance and thickness
- Implication for the ice pack and frozen lake/fjord characterization (environmental and safety issues)

Wavefield in a Floating ice layer (Stein et al. 1998)

Free ice layer \longleftrightarrow Stress free plate

Waves: Lamb waves (A_n, S_n) + Shear-Horizontal (SH_n)

Floating ice layer () floating plate

* Additional waves ~ Scholte wave (interface solid-liquid)
* Modification of the dispersion branches of guided modes
* Waves: QA_n, QS_n, QS (Q=« Quasi ») + SH_n

We record below the cutoff frequency of higher modes

For freq x thickness < 50 Hz.m :

A₀ = leaky mode
QS = Sholte / flexural
QS₀ = axial / longitudinal
SH cannot be catched by the fiber

Two experiments during winter 2020 and 2012 at Lacs Roberts

	2020	2021
Active fiber length	200m	320m
Optical parameters	PRF =2000 Hz dx=0.8m SR : GL=10m DT=2ms	PRF =2000 Hz dx=0.1m SR: GL=2m DT=5ms

Profile along the fiber

Strain Rate: Filtered data

2021 (GL = 2m)

F-K Transform averaged over selected sources

$$c_{QS_0} = \sqrt{\frac{E}{\rho(1-\nu^2)}}$$
 (1)

Fundamental Sholte wave: QS

$$\left(\frac{\omega}{c_{QS}}\right)^4 - \frac{h\rho\omega^2}{D(h)} - \frac{\rho_w}{D(h)} \left(\frac{\omega^2}{\sqrt{\left(\frac{\omega}{c_{QS}}\right)^2 - \left(\frac{\omega}{c_w}\right)^2}} - g\right) = 0$$

Dispersion curve enhanced by svd filtering (Moreau et al. 2017) using several shots

Assuming v=0.33 (standard ice value), eq. 1 gives E and eq. 2 yields h

Results and Conclusions

2020 observation			2(obsei	021 rvation
90 cm	snow		25 cm	Wet snow
			45 cm	Snow - water
30 cm	Snow + water			Water
10 cm	ice		60 cm	ice
30 cm	lce + water			
100 cm	ice			

<u>Results</u>

2020: assuming ρ = 915 kg/m³ ; E = 9.4 GPa; ν = 0.33 h = 0.56 m using 1-5Hz band

2021 => assuming ρ = 915 kg/m³ ; v = 0.33 V_{QS0}=**1800 m/s**; **E** = **3.4 GPa**; **h** = **0.55 m** using 1-30 Hz band

Conclusion

DAS and optical fibers seem appropriate for ice seismic monitoring, although the real Frozen structure is more complex than a single ice layer. Next step will be to experiment the method on thicker and stronger ice pack and monitor The structure along time

Acknowledgment:

P. Halot, J.P Jaouenne and the Chamrousse ski resort technical staff for their technical support