
We combine global air quality 
measurements with high-resolution 
geospatial data from various sources.

Explainable machine learning is 
applied to obtain estimates of the 
ozone concentration based on the 
geospatial data.

The learned model is used to 
obtain a global high-resolution air 
quality map, including locations 
without measurements.

Area of 
applicability

Model
robustness

Scientific 
consistency

Error
modeling

Algorithms,      
configuration

Map 
interpretation

Summary    
+ outlook

Global fine resolution mapping of ozone 
metrics through explainable machine learning
Clara Betancourt     (c.betancourt@fz-juelich.de), Scarlet Stadtler    , Timo Stomberg, Ann-Kathrin Edrich,
Ankit Patnala, Ribana Roscher    , Julia Kowalski    , and Martin G. Schultz

Measured ozone average values

Altitude
NOx emissions

Forest
Climatic zone

Relative altitude

+ …

© Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.

vEGU21 ITS4.4/AS4.1

Mapped ozone average values

Data
description

View
abstract

A-priori
uncertainty
estimation

mailto:c.betancourt@fz-juelich.de
https://orcid.org/0000-0002-1347-5297
https://orcid.org/0000-0002-1347-5297
https://orcid.org/0000-0002-6613-9852
https://orcid.org/0000-0002-6613-9852
https://orcid.org/0000-0003-0094-6210
https://orcid.org/0000-0003-0094-6210
https://orcid.org/0000-0003-4123-5896
https://orcid.org/0000-0003-4123-5896
https://orcid.org/0000-0003-3455-774X
https://orcid.org/0000-0003-3455-774X


This is a nonlinear presentation. Please use the buttons to click through the content. Thanks!

Back to
title slide

c.betancourt@fz-juelich.de



Abstract

Global fine resolution mapping of ozone metrics through explainable machine learning

Through the availability of multi-year ground based ozone observations on a global scale, substantial geospatial meta data, and high 
performance computing capacities, it is now possible to use machine learning for a global data-driven ozone assessment. In this 
presentation, we will show a novel, completely data-driven approach to map tropospheric ozone globally.

Our goal is to interpolate ozone metrics and aggregated statistics from the database of the Tropospheric Ozone Assessment Report
(TOAR) onto a global 0.1° x 0.1° resolution grid. It is challenging to interpolate ozone, a toxic greenhouse gas because its formation 
depends on many interconnected environmental factors on small scales. We conduct the interpolation with various machine learning 
methods trained on aggregated hourly ozone data from five years at more than 5500 locations worldwide. We use several geospatial
datasets as training inputs to provide proxy input for environmental factors controlling ozone formation, such as precursor emissions 
and climate. The resulting maps contain different ozone metrics, i.e. statistical aggregations which are widely used to assess air 
pollution impacts on health, vegetation, and climate.

The key aspects of this contribution are twofold: First, we apply explainable machine learning methods to the data-driven ozone 
assessment. Second, we discuss dominant uncertainties relevant to the ozone mapping and quantify their impact whenever possible. 
Our methods include a thorough a-priori uncertainty estimation of the various data and methods, assessment of scientific consistency, 
finding critical model parameters, using ensemble methods, and performing error modeling.

Our work aims to increase the reliability and integrity of the derived ozone maps through the provision of scientific robustness to a 
data-centric machine learning task. This study hence represents a blueprint for how to formulate an environmental machine learning 
task scientifically, gather the necessary data, and develop a data-driven workflow that focuses on optimizing transparency and 
applicability of its product to maximize its scientific knowledge return.

Doi: https://doi.org/10.5194/egusphere-egu21-7596
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Data description

Ozone data
• We use the AQ-Bench dataset as training data 

• It contains aggregated ozone metrics from the years 2010-2014 at 
5577 air quality observation stations of the TOAR database 

• Ozone metrics include: average ozone, percentiles, health/ 
vegetation related metrics. (This display only contains maps of 
average ozone)

• Most stations are located in the US, Europe or East Asia (≈ 98 %)
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Geospatial data
• The chosen geospatial data are related to ozone processes, as 

described in Betancourt et al. 2020

• The data are gathered from multiple sources and harmonized to a
0.1° × 0.1° resolution

• All data fields: Climatic zone, altitude/relative altitude, several 
types of land cover, wheat/rice production, NOx emissions, NO2
full column, population density, stable nightlights, latitude

For our mapping approach, we combine multi-year ground based ozone
observations on a global scale with several high-resolution geospatial  datasets.

NOx emissions

Forest land coverAltitude

+ …
Ozone average values 2010-2014
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A-priori uncertainty estimation

Before applying machine learning, we evaluate the data and planned mapping method. We also 
formulate the expected accuracy of our mapping method (see grey box).
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Ozone data uncertainty

• Ozone measurement error: 5 ppb is a 
conservative estimate (TOAR-db)

• Robustness of ozone metrics is ensured by 
data capture criteria

• Ozone trends are usually < 1ppb/y

• Measurements spread irregularly over the 
globe. Most measurements in USA, 
Europe, Japan (see image)

Geospatial data uncertainty

• The geospatial data are collected from 
multiple sources, such as satellite images 
and digital elevation models

• All sources have their own quality control

• Through global change, also the geospatial 
data can show trends

Modeling approach issues

• Training data coverage is low in some 
world regions, e.g. Africa

• We use a snapshot approach where 
temporal variations are filtered out

• The model robustness might be an issue in 
some regions since we train on a small 
dataset of 5577 samples

• Point measurements might not be 
representative for 0.1° × 0.1° grid boxes 

Air quality measurement location

We expect the model to reliably capture 
the global variability of ozone in all regions 

with sufficient training data coverage.
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Machine learning algorithms and configuration

Our dataset is relatively small, so we use standard machine learning methods (shallow Neural Network and 
Random Forest), and no deep neural networks. These methods are quick to train and explainable machine 
learning methods can be applied relatively easily.
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Algorithms and training

• 60/20/20% independent data split
(stations are independent if > 50 km apart)

• Neural Network with two hidden layers (20/5 neurons)
- Learning rate = 0.0001
- λ2 (regularization parameter) = 0.05
- ReLu activation function
- 15000 training epochs with an Adam optimizer

• Random Forest with 100 trees

Feature Engineering

• We performed basic feature engineering to improve the 
interpretability of the model

• Different types of savanna, shrublands, and forests are 
given individually in the original land cover dataset. We 
merged them into ‘savanna’, ‘forest’ and ‘shrubland’

• Instead of the latitude, we took the absolute latitude, 
since radiation and temperature decrease when moving 
away from the equator regardless in which direction

Pruning

• Unnecessary predictors can favor overfitting

• Five predictors decreased the test R2 value of both 
algorithms, so we removed them

Evaluation metric

• R2 > 50% for both algorithms on independent test set
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Our model performs well on 
the independent test set.
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Final predictor list
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Algorithms,      
configuration

Climatic zone
Absolute latitude
Altitude
Relative altitude
Water in 25 km area
Forest in 25 km area
Shrublands in 25 km area
Savannas in 25 km area
Grasslands in 25 km area
Permanent wetlands in 25 km area
Croplands in 25 km area
Rice production
NOx emissions
NO2 column
Population density
Maximum population density in 5 km area
Maximum population density 25 km area
Nightlight 1 km
Nightlight in 5 km area
Maximum nightlight in 25 km area

Urban And Built-Up in 25 km area
Cropland / Natural vegetation mosaic in 25 km area
Snow and ice in 25 km area pruned
Barren or sparsely vegetated in 25 km area
Wheat production



Feature importance Feature interaction

Scientific consistency

SHAP values also show the interaction of different features in 
the model. The plot below shows that the influence of 
Nightlight (a proxy for industry and traffic exhaust) on the 
model results is generally nonlinear and also depends on 
warmth and radiation (proxied by latitude). 

We use SHAP values (short for SHapley Additive exPlanations) to evaluate the scientific consistency of our model. 
A SHAP value indicates the influence a feature has on the model result and how large this influence is.
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The graph below shows some SHAP values of our random forest 
model on the test set. One example is the latitude, a proxy for 
warmth and radiation, which favors ozone formation. The SHAP 
value increases when moving closer to the equator, which is 
consistent with ozone research. 
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The model captures nonlinear 
relations which are consistent with 

our understanding of ozone 
chemistry
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Spatial perturbations Influence on model results

Error modeling
Our model is expected to have errors and uncertainties. Here we assess the error introduced into our model by spatial 
fluctuations in ozone values. A typical spatial ozone fluctuation is 5 parts per billion (TOAR-db). But just perturbing the training 
data with random noise of that amplitude would ignore the correlation of the spatial fluctuations, and may lead to an 
underestimation of the introduced error. Instead, stations which are close to each other (< 50 km apart) are perturbed similarly. 

1) Error model for ozone measurements: 
perturbations are random, but close-by 
stations are perturbed in the same way. 

3) A map is generated based on the 
perturbed model. It shows that the 
deviation of our standard map 
never exceeds the initial 
perturbation of the training data. 
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2) The model is retrained
on the perturbed inputs

5) Another error model was used to investigate temporal 
fluctuations and trends in the ozone. It showed similar 
results.

4) Aggregate results: Multiple realizations of spatial perturbations 
provide an ensemble of models. Looking at the standard 
deviations, we see that ozone fluctuations introduce a globally 
relatively uniform error which is in the range of the fluctuations. 

Deviation from
standard ozone map

Deviation from
standard training data

Standard deviation of mapping results

Standard deviation of training data

The model is robust 
against typical ozone 

fluctuations.
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Model robustness Back to
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Robustness analysis by cross validation Spatial overfitting

Regarding the robustness of the model, two things need to be investigated: 1) Is the model itself robust? 2) Can the 
model be applied in all world regions with similar features to the training dataset, or is it spatially overfitted? 

HTAP regions     NAM      EUR      EAS

1) To evaluate the robustness of the model, we group the 
stations into interdependent clusters, and then assign 
those clusters to training/evaluation sets randomly (the 
independent test set is left out completely).

2) Then we train our model only on two of 
the three world regions (e.g. EUR and EAS).

3) Testing on the remaining region (NAM), the R2 value of 
the random forest model is diminished by 10%, and that of 
the neural network drops by 40%. So the random forest 
seems to be less prone to spatial overfitting. More 
investigation is needed on this issue.

1) To test spatial overfitting, we divide the world into regions. 
>98% of our training data are in either in NAM, EUR or EAS.

2) From the groups of independent 
stations, 4 independent datasets are 
formed, which are then used for cross 
validation.

The dataset is slightly noisy. Furthermore, 
the issue of spatial overfitting has to be 

investigated more.

Station clusters

3) Although the test R2 value was stable, the 
training and validation R2 values vary by 7-8% for 
both Random Forest and Neural Network. This 
was expected, because with 5577 samples, the 
dataset is relatively small.
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Training data form cluster in feature space We map only the points inside that cluster

Area of applicability

2) The Area of Applicability covers most parts of USA, Europe 
and Asia. Environmental conditions often differ from the 
training data in the rest of the world. High mountains are not in 
the Area of Applicability, because there are hardly any ozone 
measurement stations built at higher altitudes. 
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Area of Applicability

Our model is technically applicable on the whole world. But there are regions which have properties very different from our 
training data. It is important to sort them out as the predictions are not valid there. Our ‘Area of Applicability’ is based on a 
preprint by Meyer & Pebezma, ArXiv, 2020.

1) Our training data set AQ-Bench forms a cluster in the 
feature space (cluster found with dbscan). Before the 
ozone at a specific location is predicted, we check if its 
features are part on this cluster. The plot below shows a 
3D projection of the feature space. Example data points 
we excluded from mapping are shown in red.

We only apply the model in regions 
with features values similar to those in 

the training dataset.
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Map interpretation

Below you can see our map generated with the Random Forest model. We have added a detailed view of some exemplary 
regions with interesting ozone patterns. 
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True values

Our model

Swamp/coast (Florida):
We see a relatively uniform 
distribution, with slightly 
elevated ozone values at the 
eastern coast.

Po valley and Alps (Italy): The Po valley is located 
close to the alps in northern Italy. We can see 
clearly  that low ozone is captured in the valley 
and rises at mountains, as we expected from 
previous studies.

Tokyo and surroundings (Japan): 
The metropolitan region around 
Tokyo is well covered with 
measurement stations. 
Predictions become more 
important outside the area.

Spatial patterns
(e.g. coast, mountain, city)

are captured well
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Summary and outlook
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We produced the first data driven map of global tropospheric ozone, R2 > 50%

 Mapping allows ozone assessment in regions with no air quality stations, but with
similar environmental conditions as in the training data

 Explainable machine learning increases trust in the maps

Future research…

 More air quality observations are needed to extend the area of applicability,
e.g. in Africa or South America

 The maps could be compared with ozone model data

 Time resolved mapping can be conducted, instead of our ‘snapshot’ approach
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