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Mixing in volume bounded by fixed transect

3—0

variance destruction

= ()

fixed transect



Qj( Long-term averaged estuary

Mixing in volume bounded by fixed transect
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Classical Knudsen volume and salt relations:

Qin + Qout + Qr =0 Qinsin + QoutS()ut =0
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fixed transect

Classical Knudsen volume and salt relations:

Qin =+ Qout + Qr =0 Qinsin + QoutSOru,t =0
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Knudsen mixing relation:
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Qin (Sin) + Qout (Sout) = SinSout@r = M

MacCready et al. (2018)
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approximate mixing for averaged conditions

fixed transect

Classical Knudsen volume and salt relations: Knudsen mixing relation:

Qin ™ QO“‘t + QT =0 Qinsfin + QOUtSOUt =0 Qin (Sin)Q + Qout (SO’U,L‘)2 = Sinsothr =M

MacCready et al. (2018)
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Mixing in volume bounded by moving isohaline
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a, moving isohaline

Burchard (2020)
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Mixing in volume bounded by moving isohaline

dz
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a, moving isohaline

M(S) — SQQT’

exact mixing for averaged conditions

Burchard (2020)
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Defining properties per salinity class

\ volume per salinity class Walin (1977)

V(S +3AS) — V(S —1AS) s OV(S)
AS 0S8

= v(.5)




Qj( Long-term averaged estuary

Defining properties per salinity class

\ volume per salinity class Walin (1977)
lln
V(S+3A8) ~ V(S 3AS) a5 o OV(S) _ oy
AS 98
mixing per salinity class Wang et al. (2017), Burchard (2020)| Exact for

. - long averages
M(S + %AS) _ M(S — %AS) a5 o OM(S) B universal law pEoo

AS ’ oS m(S) - S fully inside domain




3D exponential estuary — from neap tide into spring tide
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3D exponential estuary

Analysing mixing
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Analysing mixing
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Analysing mixing
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Salinity mixing in Pearl River Estuary
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‘ Salinity mixing in Pearl River Estuary
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Salinity mixing in Pearl River Estuary

Spatial distribution

bathymetry
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‘ Salinity mixing in Pearl River Estuary

Mixing per salinity class
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Salinity mixing in Pearl River Estuary

Mixing per salinity class (time averaged)
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i Conclusions

Conclusions

e Calculating the mixing per salinity class, m(S), provides a
useful parameter to analyse estuarine mixing.

* Long term averages of the effective mixing per salinity class
should result as the universal law of estuarine mixing,
m(S)=25Q..

 The law is valid even for complex multi-channel estuaries
with islands such as the Pearl River Estuary.

* The effective mixing per salinity class is exactly composed of
physical plus numerical mixing.

e What is of interest are the short-term deviations from this
estuarine mixing law.
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