

# A universal law of estuarine mixing



Hans Burchard<sup>1</sup>, Ulf Gräwe<sup>1</sup>, Knut Klingbeil<sup>1</sup>, Xaver Lange<sup>1</sup>, Xiangyu Li<sup>1,2</sup>, Marvin Lorenz<sup>1</sup>

Leibniz Institute for Baltic Sea Research Warnemünde, Germany
School of Marine Sciences, Sun Yat-sen University, Zhuhai, China



# A universal law of estuarine mixing



Hans Burchard<sup>1</sup>, Ulf Gräwe<sup>1</sup>, Knut Klingbeil<sup>1</sup>, Xaver Lange<sup>1</sup>, Xiangyu Li<sup>1,2</sup>, Marvin Lorenz<sup>1</sup>

1. Leibniz Institute for Baltic Sea Research Warnemünde, Germany 2. School of Marine Sciences, Sun Yat-sen University, Zhuhai, China









Knudsen (1900)

#### Classical Knudsen volume and salt relations:

 $Q_{in} + Q_{out} + Q_r = 0 \quad Q_{in}s_{in} + Q_{out}s_{out} = 0$  $Q_{in} = \frac{s_{out}}{s_{in} - s_{out}}Q_r \quad Q_{out} = -\frac{s_{in}}{s_{in} - s_{out}}Q_r$ 





#### Classical Knudsen volume and salt relations:

$$Q_{in} + Q_{out} + Q_r = 0 \quad Q_{in}s_{in} + Q_{out}s_{out} = 0$$

$$Q_{in} = \frac{s_{out}}{s_{in} - s_{out}} Q_r \quad Q_{out} = -\frac{s_{in}}{s_{in} - s_{out}} Q_r$$
  
Knudsen (1900)

#### Knudsen mixing relation:

$$Q_{in} (s_{in})^2 + Q_{out} (s_{out})^2 = s_{in} s_{out} Q_r = M$$

MacCready et al. (2018)



#### Classical Knudsen volume and salt relations:

$$Q_{in} + Q_{out} + Q_r = 0 \quad Q_{in}s_{in} + Q_{out}s_{out} = 0$$

$$Q_{in} = \frac{s_{out}}{s_{in} - s_{out}}Q_r \quad Q_{out} = -\frac{s_{in}}{s_{in} - s_{out}}Q_r$$
  
Knudsen (1900)

#### Knudsen mixing relation:

$$Q_{in} (s_{in})^2 + Q_{out} (s_{out})^2 = s_{in} s_{out} Q_r = M$$

MacCready et al. (2018)



#### Mixing in volume bounded by moving isohaline





#### Mixing in volume bounded by moving isohaline



Burchard (2020)



#### Defining properties per salinity class





#### Defining properties per salinity class





#### Defining properties per salinity class



LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

NARNEMÜNDE



EIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

### Analysing mixing



Mixing averaged over 3 spring-neap cycles

eibniz Institute for Baltic Sea Research

### Analysing mixing



### Analysing mixing





#### Salinity mixing in Pearl River Estuary





GETM setup, simulation, and analysis by Xiangyu Li



# **Spatial distribution**

#### bathymetry

### mixing per salinity class





# **Mixing per salinity class**

### tidally resolved

#### tidally averaged





#### Mixing per salinity class (time averaged)





## Conclusions

- Calculating the mixing per salinity class, *m(S)*, provides a useful parameter to analyse estuarine mixing.
- Long term averages of the effective mixing per salinity class should result as the universal law of estuarine mixing, m(S)=2SQ<sub>r</sub>.
- The law is valid even for complex multi-channel estuaries with islands such as the Pearl River Estuary.
- The effective mixing per salinity class is exactly composed of physical plus numerical mixing.
- What is of interest are the short-term deviations from this estuarine mixing law.

Burchard, H., A universal law of estuarine mixing. J. Phys. Oceanogr., 50, 81-93, 2020.