Cross-diffusion Triggered Wave Instabilities

M.M. Hu1, Q.P. Sun1, C. Schrank2, K. Regenauer-Lieb3
1School of Civil Engineering, The University of Hong Kong, Hong Kong
2Science and Engineering Faculty, Queensland University of Technology, Australia
3School of Minerals and Energy Resources Engineering, UNSW Sydney, Australia

“All is flux” -- Heraclitus

• Consider a concurrent scenario of primary and secondary consolidation processes in a porous viscoplastic medium1:

<table>
<thead>
<tr>
<th>1-D Hydro-Poro-Mechanics based on thermodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therodynamic Force (1-D)</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>$F_H = \frac{\partial p_f}{\partial x}$</td>
</tr>
<tr>
<td>$F_M = \frac{\partial p_s}{\partial x}$</td>
</tr>
</tbody>
</table>

• How to manifest the possible time-dependent interactions “around” the solid-fluid interface?

- Cross-diffusion in a complex system: the phenomenon when a generalized thermodynamic force induces a generalized thermodynamic flux of another kind.

\[
\frac{\partial p_s}{\partial t} = D_M \frac{\partial^2 p_s}{\partial x^2} + d_H \frac{\partial^2 p_f}{\partial x^2} + R_1,
\]

\[
\frac{\partial p_f}{\partial t} = d_M \frac{\partial^2 p_s}{\partial x^2} + D_H \frac{\partial^2 p_f}{\partial x^2} + R_2,
\]

Mixture theory + Inter-constituent mass transfer + Relaxing the adiabatic constraints on the reaction part of the system