

E LA TRANSITION

ECOLOGIOUE

Liberté Égalité Fraternite

Carbon cycle response to temperature overshoot beyond 2 °C – an analysis of CMIP6 models

I. Melnikova^{1,2}, O. Boucher¹, P. Cadule¹, P. Ciais³, T. Gasser⁴, Y. Quilcaille⁴, H. Shiogama², K. Tachiiri^{2,5}, T. Yokohata² & K. Tanaka^{2,3}

¹IPSL / CNRS (France), ²NIES (Japan), ³LSCE CEA (France), ³IIASA (Austria), ⁴JAMSTEC (Japan)

EGU2021

Melnikova et al. (*Earth's Future*, 2021) https://doi.org/10.1029/2020EF001967

Motivations for Achieving the Paris Agreement Temperature Targets after Overshoot (PRATO) project

Overshooting the temperature target is becoming more likely 2

Background studies

Study	Model	Design	Results
Boucher <i>et al.</i> , 2012, Zickfield <i>et al.</i> , 2016	HadGEM2-ES, Uvic ESCM	572-1144 ppm CO ₂ , 2.0 to 5.5 °C warming (idealized)	Ocean becomes a source in a few decades, land is sink for long time
Tokarska <i>et al.</i> , 2019	UVic ESCM	480-620 ppm CO_2 , 1.5 to 2.5 °C warming (idealized)	Ocean and land are decreasing sinks after ramp- down, more carbon is stored in the ocean
Palter <i>et al.,</i> 2018	GFDL-ESM2M	>580 ppm, ≈2 °C warming	Land and ocean become a carbon source nearly two to three decades after the peaks of CO_2 concentration and temperature
Schwinger & Tjiputra, 2018	NorESM	>800 ppm, ≈4 °C warming (<mark>idealized</mark>)	Carbon source only after a strong reduction in atmospheric CO_2

- Different, highly idealized scenarios
- Limited number of models, sometimes of intermediate complexity

What controls the response of the carbon cycle to the CO₂ and temperature overshoots is not well-known

Study purpose

To explore the carbon cycle feedbacks over land and ocean under overshoot scenario

SSP5-3.4 OS 750 Reaches radiative forcing ---Historical 3.4 Wm⁻² in 2100 -SSP5-3.4-OS CO₂ concentration (ppm) 650 SSP5-8.5 Same pathway as SSP5-8.5 (fossil-fuel development) Negative emissions by 2100 until 2040 550 450 350 Ramping back to zero 2170 250 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 Year

CMIP6 ESMs

- 1) IPSL-CM6A-LR
- 2) CNRM-ESM2-1
- 3) CanESM5
- 4) UKESM1-0-LL
- 5) MIROC-ES2L
- 6) CESM2-WACCM

<u>Methods</u>

- We investigate the temporal changes in carbon fluxes by six CMIP6 ESMs.
- We apply the carbon cycle feedback framework to quantify the carbon cycle feedbacks of the CMIP6 ESMs under the SSP5-3.4-OS pathway.

Carbon cycle feedback framework

- Attribution of the changes in carbon fluxes before and after the peaks to the changes in CO₂ concentration and temperature (climate)
- Was never applied for both land and ocean in the overshoot study
- Require COU and BGC simulations

Land and ocean carbon uptakes

- CO₂ concentration peaks two decades after CO₂ growth rate
- ESMs differ in the response of temperature to the prescribed changes in CO₂ concentration, but all agree on a delayed response
- After the peak of CO₂ growth rate, land and ocean take up carbon for at least 50 years but at a declining rate
- In the 22nd and 23rd centuries, ocean is a weak carbon sink, the response of land has a larger range of uncertainties
- Land and ocean carbon uptakes peak before the CO₂ concentration peak

Peak of ocean carbon uptake

Global land and ocean carbon uptake has a nearly linear dependency on the atmospheric CO_2 growth rate with a hysteresis after the CO_2 growth rate peak

- In the short time scales, the changes are related the state disequilibrium. The greater the disequilibrium is (i.e., the larger the CO₂ growth rate is), the larger the responses of the land and ocean carbon uptakes are
- In the long time scales, the changes are more related to the state of the system itself

Peak of land carbon uptake

The land sink decrease is due to the larger growth of respiration than photosynthetic production and concurrent land-use change emissions

Carbon cycle feedbacks

- Under declining emissions, both land and ocean continue to take up carbon at an asymmetrically larger rate
- The total γ-driven loss of carbon is smaller than β gain at least till the end of the 21st century. The changes in the carbon cycle are dominated by β rather than γ

Conclusions

- In SSP5-3.4-OS, the land and ocean continue to remove carbon from the atmosphere at least for 50 years after the peak of the CO₂ growth rate. Land and ocean turn to a source afterward in the first half of the 22nd century for a short period and become a weak sink later, i.e., reach a new steady-state
- The ocean uptake decreases due to its dependency on the CO₂ growth rate
- The land uptake decreases due to a larger growth of respiration than GPP and concurrent LUC emissions
- The hysteresis in β and γ after their peaks causes amplification of carbon cycle feedback parameters.
- In SSP5-3.4-OS, the total β carbon gain β×ΔCO₂ is larger than γ loss γ×ΔT, and, thus, land and ocean continue to uptake carbon during the CO2 and temperature rampdown periods.