INTERIOR OF JUPITER IN THE CONTEXT OF JUNO AND GALILEO SIGNATURE OF A DECOUPLING BETWEEN THE ATMOSPHERE AND THE INTERIOR

Florian Debras

Gilles Chabrier

uropean Research Council

erc

Overview

I. Constraints of the models

II. New models of the interior of Jupiter

III. Implications

Galileo's observations (Von Zahn et al. 1998, Wong et al. 2004):

- $Z_{ext} > Z_{sun} ~pprox 0.02$ (Li et al. 2017, 2020)
- 165 K, 1 bar assume convection (! Guillot)

Juno's gravitational moments (Bolton et al. 2017, less et al. 2018)

Galileo's observations (Von Zahn et al. 1998, Wong et al. 2004):

- $Z_{ext} > Z_{sun} \approx 0.02$

- 165 K, 1 bar - assume convection

Juno's gravitational moments (Bolton et al. 2017, less et al. 2018)

Protosolar helium: Y/X+Y ~ 0.275

Galileo's observations (Von Zahn et al. 1998, Wong et al. 2004):

- $Z_{ext} > Z_{sun} \approx 0.02$

- 165 K, 1 bar - assume convection

Juno's gravitational moments (Bolton et al. 2017, less et al. 2018)

Protosolar helium: Y/X+Y ~ 0.275

CMS method: Jupiter in layers (Hubbard 2013, Wisdom & Hubbard 2016, Debras & Chabrier 2018, Militzer et al. 2019)

Galileo's observations (Von Zahn et al. 1998, Wong et al. 2004):

- $Z_{ext} > Z_{sun} \approx 0.02$
- 165 K, 1 bar assume convection

Juno's gravitational moments (Bolton et al. 2017, less et al. 2018)

Protosolar helium: Y/X+Y ~ 0.275

CMS method: Jupiter in layers (Hubbard 2013, Wisdom & Hubbard 2016, Debras & Chabrier 2018, Militzer et al. 2019)

Winds: Kaspi et al. 2017 or Kaspi et al. 2018

Equations of state

Chabrier, Mazevet & Soubiran 2019

April 2021

EGU21 - Interior of Jupiter - Florian DEBRAS

Equations of state

Chabrier, Mazevet & Soubiran 2019

Militzer & Hubbard 2013

4/17

April 2021

Equations of state

4/17

Water: Mazevet et al. 2019, **Soubiran & Militzer 2016** Other: drysand (Lyon & Johnson 1992)

April 2021

J₆ to J₁₀: very low value (Bolton et al. 2017, less et al. 2018)

Outer layers not very dense

5/17

Guillot et al. 2000

EGU21 - Interior of Jupiter - Florian DEBRAS

J₆ to J₁₀: very low value (Bolton et al. 2017, less et al. 2018)

Outer layers not very dense

AND

Galileo+Juno: atmosphere enriched in metals New EOS: H/He denser than SCvH

Dense outer layers

5/17

Guillot et al. 2000

J₆ to J₁₀: very low value (Bolton et al. 2017, less et al. 2018)

Outer layers not very dense

AND

Galileo+Juno: atmosphere enriched in metals New EOS: H/He denser than SCvH

Dense outer layers

HOW?

April 202

5/17

Guillot et al. 2000

Debras & Chabrier 2019

Debras & Chabrier 2019

Diluted core (Wahl et al. 17, Stevenson 1985, Helled & Stevenson 2017)

Debras & Chabrier 2019

Diluted core (Wahl et al. 17, Stevenson 1985, Helled & Stevenson 2017)

6/17

Significant entropy increase in the Mbar region

Debras & Chabrier 2019

Diluted core (Wahl et al. 17, Stevenson 1985, Helled & Stevenson 2017)

6/17

Significant entropy increase in the Mbar region

Decrease of heavy elements: $Z_2 < Z_1$

Debras & Chabrier 2019

Diluted core (Wahl et al. 17, Stevenson 1985, Helled & Stevenson 2017)

6/17

Significant entropy increase in the Mbar region

Decrease of heavy elements: $Z_2 < Z_1$

Density smaller than isentropic model (Debras Chabrier & Stevenson, submitted)

Debras & Chabrier 2019

Diluted core (Wahl et al. 17, Stevenson 1985, Helled & Stevenson 2017)

6/17

Significant entropy increase in the Mbar region

Decrease of heavy elements: $Z_2 < Z_1$

Density smaller than isentropic model (Debras Chabrier & Stevenson, submitted)

Maximum mass of compact core: 5 Earth masses (Total metal mass $25 M_T < M_Z < 45 M_T$)

Entropy increase and heavy element decrease

7/17

H/He immiscibility:

- possible, but not favoured (Morales et al. 2013, Schottler & Redmer 2018),
- decrease in Z < 10%. Low entropy increase.

Entropy increase and heavy element decrease

7/17

H/He immiscibility:

- possible, but not favoured (Morales et al. 2013, Schottler & Redmer 2018), Not enough
- decrease in Z < 10%. Low entropy increase.

Entropy increase and heavy element decrease

7/17

H/He immiscibility:

- possible, but not favoured (Morales et al. 2013, Schottler & Redmer 2018), Not enough
- decrease in Z < 10%. Low entropy increase.

First order transition of H

Entropy increase and heavy element decrease

7/17

H/He immiscibility:

- possible, but not favoured (Morales et al. 2013, Schottler & Redmer 2018), Not enough
- decrease in Z < 10%. Low entropy increase.

First order transition of H

Entropy increase and heavy element decrease

7/17

H/He immiscibility:

- possible, but not favoured (Morales et al. 2013, Schottler & Redmer 2018), Not enough
- decrease in Z < 10%. Low entropy increase.

First order transition of H

Need for semi-convection

Entropy increase and heavy element decrease

H/He immiscibility:

- possible, but not favoured (Morales et al. 2013, Schottler & Redmer 2018), Not enough
- decrease in Z < 10%. Low entropy increase.

First order transition of H

Need for semi-convection

(potentially triggered by immiscibility, Schubert et al. 1975, Earth)

EGU21 - Interior of Jupiter - Florian DEBRAS

Condition for semi-convection

Small Prandt and inverse Lewis numbers :

$$O < \frac{\mathrm{dln}T}{\mathrm{dln}P} - \left(\frac{\mathrm{dln}T}{\mathrm{dln}P}\right)_{S} < \frac{\alpha_{\mu}}{\alpha_{T}}\frac{\mathrm{dln}\mu}{\mathrm{dln}P}$$

$$\alpha_{\mu} = \left(\frac{\partial \ln \rho}{\partial \ln \mu}\right)_{P,T} , \alpha_{T} = \left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P,\mu}$$

Condition for semi-convection

Small Prandt and inverse Lewis numbers:

$$0 < \frac{\mathrm{dln}T}{\mathrm{dln}P} - \left(\frac{\mathrm{dln}T}{\mathrm{dln}P}\right)_{S} < \frac{\alpha_{\mu}}{\alpha_{T}}\frac{\mathrm{dln}\mu}{\mathrm{dln}P}$$

$$\alpha_{\mu} = \left(\frac{\partial \ln \rho}{\partial \ln \mu}\right)_{P,T}, \quad \alpha_{T} = \left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P,\mu}$$

= 1 for ideal gases

Condition for semi-convection

Small Prandt and inverse Lewis numbers :

 $0 < \frac{\mathrm{dln}T}{\mathrm{dln}P} - \left(\frac{\mathrm{dln}T}{\mathrm{dln}P}\right)_{S} < \frac{\alpha_{\mu}}{\alpha_{T}}\frac{\mathrm{dln}\mu}{\mathrm{dln}P}$

$$\alpha_{\mu} = \left(\frac{\partial \ln \rho}{\partial \ln \mu}\right)_{P,T}$$
, $\alpha_{T} = \left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P,\mu}$

= 1 for ideal gases

Debras & Chabrier 2019

Condition for semi-convection

Small Prandt and inverse Lewis numbers :

 $0 < \frac{\mathrm{dln}T}{\mathrm{dln}P} - \left(\frac{\mathrm{dln}T}{\mathrm{dln}P}\right)_{S} < \frac{\alpha_{\mu}}{\alpha_{T}}\frac{\mathrm{dln}\mu}{\mathrm{dln}P}$

$$\alpha_{\mu} = \left(\frac{\partial \ln \rho}{\partial \ln \mu}\right)_{P,T}, \quad \alpha_{T} = \left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P,\mu}$$

Debras & Chabrier 2019

8/17

= 1 for ideal gases

Semi-convection thermodynamically favoured deeper than 0.1 Mbar

EGU21 - Interior of Jupiter - Florian DEBRAS

Effects of semi-convection

 ΔS coherent with our models (~ 0.5 k_B/proton)

Possible to sharply decrease the metal content

Leconte & Chabrier 2012

	J4, J10 + Kaspi 17	J4, J10 + Kaspi 18	J6, J8 + Kaspi 17	J6, J8 + Kaspi 18	Galileo	EOS	ΔS
Debras Chabrier	V	V	V	X	V	V	V

	J4, J10 + Kaspi 17	J4, J10 + Kaspi 18	J6, J8 + Kaspi 17	J6, J8 + Kaspi 18	Galileo	EOS	ΔS
Debras Chabrier	V	V	V	X	V	V	V

Something missing in our models ?

	J4, J10 + Kaspi 17	J4, J10 + Kaspi 18	J6, J8 + Kaspi 17	J6, J8 + Kaspi 18	Galileo	EOS	ΔS
Debras Chabrier	V	V	V	X	V	V	V

Something missing in our models ?

North-South symmetric winds underestimated ?

	J4, J10 + Kaspi 17	J4, J10 + Kaspi 18	J6, J8 + Kaspi 17	J6, J8 + Kaspi 18	Galileo	EOS	ΔS
Debras Chabrier	V	V	V	X	V	V	V

Something missing in our models ?

North-South symmetric winds underestimated ?

Dinamic Self Gravity effects : Wicht et al. 2020, Dietrich et al. 2021 Kong, Zhang & Schubert 2017, Li et al. 2020

Magnetic field: Moore et al. 2018, sign of two dynamo regions ?

Moore et al. 2018

Deep dipolar dynamo and shallow multipolar dynamo ?

April 2021

Metal decrease

Large metal decrease possible if:

- 1) Phase separation very efficient. Very doubtful
- 2) Layered convection triggers sharp decrease in metals. Doubtful

Metal decrease

Large metal decrease possible if:

- 1) Phase separation very efficient. Very doubtful
- 2) Layered convection triggers sharp decrease in metals. Doubtful
- 3) Atmospheric accretion occurred since the breaking of convection
 - ~ 1 Earth mass.

Metal decrease

Large metal decrease possible if:

- 1) Phase separation very efficient. Very doubtful
- 2) Layered convection triggers sharp decrease in metals. Doubtful
- 3) Atmospheric accretion occurred since the breaking of convection
 - ~ 1 Earth mass.

Crucial consequences on formation models !!

April 2021

EGU21 - Interior of Jupiter - Florian DEBRAS

Long term survival of a diluted core ?

Moll et al. 2017

Long term survival of a diluted core ?

Moll et al. 2017

Giant impact: Liu et al. 2019

April 2021

EGU21 - Interior of Jupiter - Florian DEBRAS

Evolution

Layered convection:

-Superadiabaticity of layered convection ?

-Age of layered convection ?

Evolution

Layered convection:

-Superadiabaticity of layered convection ? -Age of layered convection ?

Immiscibility:

-Latent heat of phase separation ?
-Entropy increase due to phase separation ?
-P-T shape of the immiscibility diagram?

Evolution

Layered convection:

-Superadiabaticity of layered convection ? -Age of layered convection ?

Immiscibility:

-Latent heat of phase separation ?
-Entropy increase due to phase separation ?
-P-T shape of the immiscibility diagram?

Diluted and compact cores:

-Energy required to dilute the core ? -Demixing of heavy elements with time ? Mazevet et al. 2019

Evolution

Layered convection:

-Superadiabaticity of layered convection ? -Age of layered convection ?

Immiscibility:

-Latent heat of phase separation ?
-Entropy increase due to phase separation ?
-P-T shape of the immiscibility diagram?

Diluted and compact cores:

-Energy required to dilute the core ? -Demixing of heavy elements with time ? Mazevet et al. 2019

Has Jupiter ever been fully convective ?

Evolution

Layered convection:

-Superadiabaticity of layered convection ? -Age of layered convection ?

Immiscibility:

-Latent heat of phase separation ?
-Entropy increase due to phase separation ?
-P-T shape of the immiscibility diagram?

Diluted and compact cores:

-Energy required to dilute the core ? -Demixing of heavy elements with time ? Mazevet et al. 2019

Has Jupiter ever been fully convective ?

Evolution

Layered convection:

-Superadiabaticity of layered convection ? -Age of layered convection ?

Immiscibility:

April 2021

-Latent heat of phase separation ?
-Entropy increase due to phase separation ?
-P-T shape of the immiscibility diagram?

Diluted and compact cores:

-Energy required to dilute the core ? -Demixing of heavy elements with time ? Mazevet et al. 2019

Has Jupiter ever been fully convective?

EGU21 - Interior of Jupiter - Florian DEBRAS

Extrasolar planets

Atmospheric composition is NOT easily linked with bulk composition

Jupiter and Saturn are NOT adiabatic, maybe from several Gyrs. Factor of \sim 3 on the total metal mass

EGU21 - Interior of Jupiter - Florian DEBRAS

Extrasolar planets

Atmospheric composition is NOT easily linked with bulk composition

Jupiter and Saturn are NOT adiabatic, maybe from several Gyrs. Factor of ~3 on the total metal mass

Careful with over simplifications!

April 2021

Summary and prospects

Juno provided new data excluding older models

Need for diluted core, extended immiscibility and/or layered convection

Strong constraints on core mass

April 2021

EGU21 - Interior of Jupiter - Florian DEBRAS

Summary and prospects

Juno provided new data excluding older models

Need for diluted core, extended immiscibility and/or layered convection

Strong constraints on core mass

Prospects

Oscillations are the necessary next step

6/1

Understanding the generation of magnetic fields in semi-convective regions is also key

Thank you !

