Pacific CO₂ fluxes pattern analysis through SST clustering

Pradeebane VAITTINADA AYAR Jerry TJIPUTRA

EGU General Assembly 2021 - April 27th 2021

Outline

Vaittinada Ayar and Tjiputra

Outline

Vaittinada Ayar and Tjiputra

CONSTRAINT the GCM uncertainties to obtain a better estimate of future climate change projections :

CONSTRAINT the GCM uncertainties to obtain a better estimate of future climate change projections : future CMIP6 models spread of **CARBON UPTAKE**.

CONTEXT

Context

CONSTRAINT the GCM uncertainties to obtain a better estimate of future climate change projections : future CMIP6 models spread of **CARBON UPTAKE. FOCUS OVER PACIFIC**

CONSTRAINT the GCM uncertainties to obtain a better estimate of future climate change projections : future CMIP6 models spread of **CARBON UPTAKE. FOCUS OVER PACIFIC**

Constraint the **VARIABILITY** of CMIP6 models carbon uptake by using its the relationship with ENSO [FEELY *et al., 2006*].

CONSTRAINT the GCM uncertainties to obtain a better estimate of future climate change projections : future CMIP6 models spread of **CARBON UPTAKE. FOCUS OVER PACIFIC**

Constraint the **VARIABILITY** of CMIP6 models carbon uptake by using its the relationship with ENSO [FEELY *et al., 2006*].

One way to study spatial pattern thanks to **STATISTICAL CLUSTERING**.

CONSTRAINT the GCM uncertainties to obtain a better estimate of future climate change projections : future CMIP6 models spread of **CARBON UPTAKE. FOCUS OVER PACIFIC**

Constraint the **VARIABILITY** of CMIP6 models carbon uptake by using its the relationship with ENSO [FEELY *et al., 2006*].

One way to study spatial pattern thanks to **STATISTICAL CLUSTERING**.

Aim : analyse carbon uptake pattern thanks SST clustering.

Vaittinada Ayar and Tjiputra

Outline

Vaittinada Ayar and Tjiputra

CONTEXT	DATA AND METHOD	Results
Data		

Monthly **OBSERVATIONS** over pacific basin

CONTEXT	DATA AND METHOD	Results
Data		

Monthly **OBSERVATIONS** over pacific basin

SST : JRA-55 reanalysis data 1958-2019 [KOBAYASHI *et al., 2015;* HARADA *et al., 2016*].

$(\cdot () \land () \vdash Y \downarrow$	\frown		
		111	- Y I

Data

Monthly **OBSERVATIONS** over pacific basin

SST : JRA-55 reanalysis data 1958-2019 [KOBAYASHI *et al., 2015;* HARADA *et al., 2016*].

fgCO₂, *P*_{CO₂} : air-sea CO2 flux gridded product from 1982-2015 [LANDSCHÜTZER *et al., 2016*].

$(\cdot () \land () \vdash Y \downarrow$	\frown		
		111	- Y I

Data

Monthly **OBSERVATIONS** over pacific basin

SST : JRA-55 reanalysis data 1958-2019 [KOBAYASHI *et al., 2015;* HARADA *et al., 2016*].

fgCO₂, *P*_{CO₂} : air-sea CO2 flux gridded product from 1982-2015 [LANDSCHÜTZER *et al., 2016*].

fgCO₂, P_{CO₂}, SST : 16 CMIP6 models [EYRING et al., 2016].

$(\cdot () \land () \vdash Y \downarrow$	\frown		
		111	- Y I

Data

Monthly **OBSERVATIONS** over pacific basin

SST : JRA-55 reanalysis data 1958-2019 [KOBAYASHI *et al., 2015;* HARADA *et al., 2016*].

fgCO₂, *P*_{CO₂} : air-sea CO2 flux gridded product from 1982-2015 [LANDSCHÜTZER *et al., 2016*].

fgCO₂, P_{CO2}, SST : 16 CMIP6 models [EYRING et al., 2016].

Clustering (regrouping) applied to SST-based NINO3, NINO4 and PDO.

Vaittinada Ayar and Tjiputra

Gaussian mixture model

Approximate the distribution of a datafield x as a weighted sum of K (the number of cluster or groups) Gaussian distribution f_k [PEARSON, 1894; MCLACHLAN & PEEL, 2000] :

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{x}; \alpha_k)$$

where π_k is the mixture ratio.

Gaussian mixture model

Approximate the distribution of a datafield x as a weighted sum of K (the number of cluster or groups) Gaussian distribution f_k [PEARSON, 1894; MCLACHLAN & PEEL, 2000] :

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{x}; \alpha_k)$$

where π_k is the mixture ratio.

Each monthly field is assigned to one cluster C_k (represented by f_k) by applying the principle of *posterior* maximum :

$$C_k = \{ \boldsymbol{x}; \pi_k f_k(\boldsymbol{x}, \boldsymbol{\alpha}_k) \geq \pi_j f_j(\boldsymbol{x}, \boldsymbol{\alpha}_j), \forall j = 1, \dots, K \}.$$

Vaittinada Ayar and Tjiputra

NÔRCE

5/13

Gaussian mixture model

Approximate the distribution of a datafield x as a weighted sum of K (the number of cluster or groups) Gaussian distribution f_k [PEARSON, 1894; MCLACHLAN & PEEL, 2000] :

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{x}; \alpha_k)$$

where π_k is the mixture ratio.

Each monthly field is assigned to one cluster C_k (represented by f_k) by applying the principle of *posterior* maximum :

$$C_k = \{ \boldsymbol{x}; \pi_k f_k(\boldsymbol{x}, \boldsymbol{\alpha}_k) \geq \pi_j f_j(\boldsymbol{x}, \boldsymbol{\alpha}_j), \forall j = 1, \ldots, K \}.$$

The BIC to be minimised to determine K: $BIC = -2 \log(L) + p \log(n)$, with *p* the number of free parameters, *n* the sample's size, *L* the likelihood.

CONTEXT

DATA AND METHOD

RESULTS

Expectation-Maximization (EM) algorithm [DEMPSTER et al., 1977]

Successive iterations (i) of the E and M steps :

EXPECTATION (E) step : for each C_k $k \in [1, \dots, K]$, and month $j \in [1, \dots, n]$:

$$\tau_k^i(x_j) = \frac{\pi_k^i f_k(x_j \mid \alpha_j^i)}{\sum\limits_{k=1}^K \pi_k^i f_k(x_j \mid \alpha_j^i)};$$

where $\tau_k^i(x_j)$ is the posterior probability that x_j belongs to C_k at iteration *i*.

CONTEXT

DATA AND METHOD

RESULTS

Expectation-Maximization (EM) algorithm [DEMPSTER et al., 1977]

Successive iterations (i) of the E and M steps :

EXPECTATION (E) step : for each C_k $k \in [1, \dots, K]$, and month $j \in [1, \dots, n]$:

$$\tau_k^i(x_j) = \frac{\pi_k^i f_k(x_j \mid \alpha_j^i)}{\sum\limits_{k=1}^K \pi_k^i f_k(x_j \mid \alpha_j^i)};$$

where $\tau_k^i(x_j)$ is the posterior probability that x_j belongs to C_k at iteration *i*.

MAXIMIZATION (M) step : for each C_k $k \in [1, \dots, K]$:

$$\pi_k^{i+1} = \frac{1}{n} \sum_{j=1}^n \tau_k^i(x_j);$$

which is the Maximum likelihood of the ratios.

Outline

Vaittinada Ayar and Tjiputra

CONTEXT

DATA AND METHOD

RESULTS

Clustering results

Vaittinada Ayar and Tjiputra

EGU21, 27/04/2021

N ORCE 7/13

DATA AND METHOD

RESULTS

Observed patterns (1985-2014)

Vaittinada Ayar and Tjiputra

DATA AND METHOD

RESULTS

N 🔿 R C E

8/13

Observed patterns (1985-2014)

Carbone Uptake Flux fgCO₂ Anomalies [TgC.yr⁻¹]

Vaittinada Ayar and Tjiputra

PO

DATA AND METHOD

RESULTS

N 🔿 R C E

9/13

CMIP6 patterns (1985-2014)

Vaittinada Ayar and Tjiputra

RESULTS

Results for CMIP6 : NINO34 vs. fgCO2 anomalies

EGU21, 27/04/2021

Vaittinada Ayar and Tjiputra

N O R C E 10/13

CMIP6 NINO34 vs. fgCO2 anomalies

	Correlation fgCO ₂ vs. NINO3.4		
	1985-2014	2071-2100	
OBS	.76	-	
ACCESS-ESM1-5	.63	5	
CanESM5-CanOE	.42	43	
CanESM5	.40	35	
CESM2	.69	.14	
CESM2-WACCM	.60	.27	
CNRM-ESM2-1	.23	.48	
GFDL-CM4	.16	54	
GFDL-ESM4	.40	24	
IPSL-CM6A-LR	.79	.35	
MIROC-ES2L	.83	34	
MPI-ESM1-2-HR	62	62	
MPI-ESM1-2-LR	54	83	
MRI-ESM2-0	.58	74	
NorESM2-LM	.32	27	
NorESM2-MM	.74	15	
UKESM1-0-LL	.52	.48	

Vaittinada Ayar and Tjiputra

CMIP6 NINO34 vs. fgCO2 anomalies

_	0	4-00
	Correlation	$1 \text{ IgCO}_2 \text{ vs.}$
	NIN	03.4
	1985-2014	2071-2100
OBS	.76	-
ACCESS-ESM1-5	.63	5
CanESM5-CanOE	.42	43
CanESM5	.40	35
CESM2	.69	.14
CESM2-WACCM	.60	.27
CNRM-ESM2-1	.23	.48
GFDL-CM4	.16	54
GFDL-ESM4	.40	24
IPSL-CM6A-LR	.79	.35
MIROC-ES2L	.83	34
MPI-ESM1-2-HR	62	62
MPI-ESM1-2-LR	54	83
MRI-ESM2-0	.58	74
NorESM2-LM	.32	27
NorESM2-MM	.74	15
UKESM1-0-LL	.52	.48

Vaittinada Ayar and Tjiputra

NÔRCE

12/13

CMIP6 $fgCO_2$ anomalies vs. NINO3.4/ $P_{CO_2}^{nt}$ anomalies

NON-THERMAL $P_{CO_2}^{nt} = P_{CO_2} \exp (\gamma_T (< SST > -SST)),$ $\gamma_T : CO_2$ temperature sensitivity (4.23%·°C⁻¹), < SST > : long-term mean SST [LANDSCHÜTZER *et al., 2018*].

CMIP6 $fgCO_2$ anomalies vs. NINO3.4/ $P_{CO_2}^{nt}$ anomalies

	Correlation fgCO ₂ vs.				
	NIN	03.4	Non-thermal P		
	1985-2014	2071-2100	1985-2014	2071-2100	
OBS	.76		85		
ACCESS-ESM1-5	.63	5	38	.37	
CanESM5-CanOE	.42	43	33	.18	
CanESM5	.40	35	34	.14	
CESM2	.69	.14	3	28	
CESM2-WACCM	.60	.27	28	29	
CNRM-ESM2-1	.23	.48	01	60	
GFDL-CM4	.16	54	02	.38	
GFDL-ESM4	.40	24	16	04	
IPSL-CM6A-LR	.79	.35	24	28	
MIROC-ES2L	.83	34	36	.31	
MPI-ESM1-2-HR	62	62	.20	.17	
MPI-ESM1-2-LR	54	83	.09	.31	
MRI-ESM2-0	.58	74	54	.31	
NorESM2-LM	.32	27	09	.02	
NorESM2-MM	.74	15	27	.05	
UKESM1-0-LL	.52	.48	32	29	

Vaittinada Ayar and Tjiputra

EGU21, 27/04/2021

N O R C E 13/13

Thank you for your attention !!

Reference

DEMPSTER, A., LAIRD, N. & RUBIN, D. (1977). "Maximum likelihood from incomplete data via the EM algorithm". J. Royal. Stat. Soc., Ser. B. Vol. 39, p. 1-38.

- EYRING, V., BONY, S., MEEHL, G. A., SENIOR, C. A., STEVENS, B., STOUFFER, R. J. & TAYLOR, K. E. (2016). "Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization". Geoscientific Model Development. Vol. 9. no. 5, p. 1937-1958.
- FEELY, R. A., TAKAHASHI, T., WANNINKHOF, R., MCPHADEN, M. J., COSCA, C. E., SUTHERLAND, S. C. & CARR, Mary-Elena (2006). "Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean". Journal of Geophysical Research : Oceans. Vol. 111. no. C8.

HARADA, Yayoi, KAMAHORI, Hirotaka, KOBAYASHI, Chiaki, ENDO, Hirokazu, KOBAYASHI, Shinya, OTA, Yukinari, ONODA, Hirokatsu, ONOGI, Kazutoshi,

MIYAOKA, Kengo & TAKAHASHI, Kiyotoshi (2016). "The JRA-55 Reanalysis : Representation of Atmospheric Circulation and Climate Variability". Journal of the Meteorological Society of Japan. Ser. II. Vol. 94. no. 3, p. 269-302.

- KOBAYASHI, Shinya, OTA, Yukinari, HARADA, Yayoi, EBITA, Ayataka, MORIYA, Masami, ONODA, Hirokatsu, ONOGI, Kazutoshi, KAMAHORI, Hirotaka, KOBAYASHI, Chiaki, ENDO, Hirokazu, MIYAOKA, Kengo & TAKAHASHI, Kiyotoshi (2015). "The JRA-55 Reanalysis : General Specifications and Basic Characteristics". Journal of the Meteorological Society of Japan. Ser. II, Vol. 93, no. 1, p. 5-48.
- LANDSCHÜTZER, Peter, GRUBER, Nicolas, BAKKER, Dorothee CE, STEMMLER, Irene & SIX, Katharina D (2018). "Strengthening seasonal marine CO₂ variations due to increasing atmospheric CO₂". Nature Climate Change. Vol. 8. no. 2, p. 146-150.
- LANDSCHÜTZER, Peter, GRUBER, Nicolas & BAKKER, Dorothee C. E. (2016). "Decadal variations and trends of the global ocean carbon sink". Global Biogeochemical Cycles. Vol. 30. no. 10, p. 1396-1417.

MCLACHLAN, G. & PEEL, D. (2000). "Finite Mixture Model". New York : Wiley series in probability & statistics.

PEARSON, K. (1894). "Contributions to the theory of mathematical evolution". Philosophical Transactions of the Royal Society of London. Vol. A 185, p. 71-110.

WETZEL, P., WINGUTH, A. & MAIER-REIMER, E. (2005). "Sea-to-air CO2 flux from 1948 to 2003 : A model study". Global Biogeochemical Cycles. Vol. 19. no. 2.