Strongly Coupled Assimilation of a Hypothetical Ocean Current Observing Network within a Regional Ocean-Atmosphere Coupled Model: Horizon2020 An OSSE Case Study of Typhoon Hato

Phillipson, L., Li, Y., and Toumi, R. (2021). Strongly Coupled Assimilation of a Hypothetical Ocean Current Observing Network within a Regional Ocean–Atmosphere Coupled Model: An OSSE Case Study of Typhoon Hato. *Monthly Weather Review* 149, 5, 1317-1336

L.Phillipson, Y.Li, R.Toumi

Imperial College London

Space and Atmospheric Physics Group (SPAT)

- Tropical cyclone intensity predictions improving at a rate of about 1/3 to 1/2 compared to track predictions for 24–72 h.
- Why is intensity predictions comparatively harder to improve?

 Hurricane intensity is critically dependent on the initial vortex structure, intensity, and moisture content.

All models are wrong :(

Zн

What else could be used?

A tropical cyclone can exert a huge wind stress on the ocean!

Drives surface currents!

*poor rubber ducks :(

*poor rubber ducks :(

What if we could track these rubber ducks?

Maybe we could use these ocean observations to help constrain the atmosphere.

Extra observations!

Weakly vs Strongly Coupled DA system

Zhang, S., Liu, Z., Zhang, X. *et al.* Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: a review. *Clim Dyn* **54**, 5127–5144 (2020)

Weakly Coupled DA

Rubber duck assimilation would only impact the ocean model initially. O2A fluxes are could in turn impact the atmos but are limited. (SST 2 ATMOS).

Strongly Coupled DA

Rubber duck assimilation could directly impact the atmos model!

How can does SCDA work?

Ensemble DA with a Local Least Squares Framework

Anderson, J. L. (2003). A Local Least Squares Framework for Ensemble Filtering. *Monthly Weather Review* 131, 4, 634-642

How can does SCDA work?

We have adjusted the ocean state using an ensemble DA method! (EAKF)

Represents an assimilation increment i.e. the difference between after and before assimilation.

How can does SCDA work?

2

Regress this observationspace increment onto model winds (WRF U10)!

Both models have been adjusted!

How can does SCDA work?

3

Repeat for every single ensemble member, and over any model variable you choose to update!

Say WRF Surface Pressure or ROMS SST

Ocean Surface Current Observations (not rubber ducks)

HF Radar

~150-200 km sampling from shore ~10km horizontal resolution ~ hourly sampling rate

Drifters

(a)

(b)

~ **15 min** sampling rate

The average horizontal current in the upper 60 cm

Coupled Model Ensemble

The Weather Research and Forecasting (WRF) model

Regional Ocean Modelling System (ROMS)

x n ensemble members

Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modelling System

AGU100 ADVANCING EARTH AND SPACE SCIENCE

Geophysical Research Letters

RESEARCH LETTER

10.1029/2018GL079677

Key Points:

- A strongly coupled data assimilation system is developed for tropical cyclone forecast
- Synthetic coastal surface currents are assimilated

Improved Tropical Cyclone Intensity Forecasts by Assimilating Coastal Surface Currents in an Idealized Study

Yi Li¹ and Ralf Toumi¹

¹Blackett Laboratory, Department of Physics, Imperial College London, London, UK

- Promising idealised results!
- TC metrics all improved in 7 idealised cyclones.
- What's the next step? More realistic set-up!

Coupled Ensemble South China Sea Model

- WRF ARW 6km horizontal resolution, 40 vertical levels. GFS 1/4 degree res boundaries.
- ROMS 4km Horizontal resolution (rotated grid), 20 vertical levels. HYCOM boundaries.
- 34 Ensemble Members

Case Study: Typhoon Hato

- Rapid motion and intensification (~30 hPa decrease < 24 hours).
- 7 observation system simulation experiments (OSSEs) using a 'truth' simulation of Hato & CNTRL

Surface Currents (m/s)

- 1. HF 2. DRIFT
- 3. HF+DRIFT 4. HF+DRIFT (WC)
- 5. **PMIN**
- 6. PMIN+HF+DRIFT 7. PMIN+HF+DRIFT (WC)

Phillipson, L., Li, Y., and Toumi, R. (2021). Strongly Coupled Assimilation of a Hypothetical Ocean Current Observing Network within a Regional Ocean–Atmosphere Coupled Model: An OSSE Case Study of Typhoon Hato. *Monthly Weather Review* 149, 5, 1317-1336

How it performs?

 Peak intensity example for the HF + DRIFT Experiment. i.e. no atoms observations!

Phillipson, L., Li, Y., and Toumi, R. (2021). Strongly Coupled Assimilation of a Hypothetical Ocean Current Observing Network within a Regional Ocean–Atmosphere Coupled Model: An OSSE Case Study of Typhoon Hato. *Monthly Weather Review* 149, 5, 1317-1336

General Results

- On average all SC experiments perform better than the CNTRL
- SC Experiments performs better than WC

Phillipson, L., Li, Y., and Toumi, R. (2021). Strongly Coupled Assimilation of a Hypothetical Ocean Current Observing Network within a Regional Ocean–Atmosphere Coupled Model: An OSSE Case Study of Typhoon Hato. *Monthly Weather Review* 149, 5, 1317-1336

Phillipson, L., Li, Y., and Toumi, R. (2021). Strongly Coupled Assimilation of a Hypothetical Ocean Current Observing Network within a Regional Ocean– Atmosphere Coupled Model: An OSSE Case Study of Typhoon Hato. *Monthly Weather Review* 149, 5, 1317-1336

•We use a SCDA to showcase how an ocean observing system could hypothetically improve estimates of Typhoon Hato.

 Tropical cyclone metrics are all improved. Track improvements are especially promising.

Imperial College London

Limitations

- It's not a 'fully' strongly coupled system. We can only assimilate surface currents.
- This actually has some advantages -We avoid having to formally define cross-model correlation length-scales. This is arguably the hardest aspect to a SDA system.
- Linear regression cannot correctly capture extreme wind regime correlation (super Typhoon winds >100 knots).