

VARIABILITY IN RAINFALL INFORMATION DERIVED FROM COLLOCATED MICROWAVE LINKS

Anna Špačková¹, Martin Fencl¹, Vojtěch Bareš¹

¹ Department of Hydraulics and Hydrology, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic (anna.spackova@cvut.cz)

Main goal: Investigation of collocated commercial microwave links and their performance without

dedicated reference measurement

Key findings: High correlation for rainfall periods, higher correlations for more intense rainfall,

rainfall cumulation errors decreases for more intense rainfalls

Collocated commercial microwave links

the advantage of similar position and similar weather conditions

R rainfall intensity [mm/h]
α, β empirical parameters
A_{tot} total attenuation [dB]
B baseline attenuation [dB]
A_w wet antenna attenuation [dB]
L CML length [km]

Collocated commercial microwave links

Prague, Czech Republic

- 13 collocated groups
- CML lengths: 700 m to 5600 m
- CML frequencies: 22 GHz to 39 GHz
- 1 min timestep (aggregated from irregular sampling ~ 10 s)
- 0.3 dB quantization
- 2014 to 2016 data
 - 33 rainfall events
 - 18255 timesteps

High correlations of collocated links

Frequency [GHz] 18 - 23 23 - 26 26 - 3232 - 38 38 - 40

Correlation increases for higher rainfall intensities

Rainfall cumulation errors decreases for more intense rainfalls

Conclusions

- Low deviation during dry weather conditions
- High correlation (>0.95) for rainfall periods (similar as rain gauges)
- RMSE mostly around 1.7 mm/h
- Rainfall cumulation errors decreases for more intense rainfalls

Outlook

- Differences of collocated CMLs: Do they reflect the reference measurement?
- More distant CMLs: the effect of advection

References

- Atlas, D. and Ulbrich, C. W.: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band, J. Appl. Meteorol., 16, 1322–1331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2, 1977.
- Olsen, R.; Rogers, D.; Hodge, D., 1978. The aRbrelation in the calculation of rain attenuation. Antennas Propag. IEEE Trans. On 26, 318–329.
- Tokay, A., D. B. Wolff, K. R. Wolff, and P. Bashor, 2003: Raingauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP).J. Atmos. Oceanic Technol., 20,1460–1477.

Acknowledgement

The research was supported by the Czech Science Foundation under project number No. GC20-14151J and by the Grant Agency of the Czech Technical University in Prague, grant No. SGS21/052/OHK1/1T/11