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Abstract 

 

The slope stability analyses using limit equilibrium method (LEM) and finite element method 

(FEM) are mostly concerned about the factor of safety (FS) value of the slope. LEM cannot 

predict the soil behaviour after failure, while FEM can only be used to measure the material 

deformation before failure. Currently the Smoothed Particle Hydrodynamics (SPH) method 

has begun to be used as an alternative to overcome excess distortion of the mesh in FEM 

analysis due to post-failure large deformations in slope stability analysis. In this study, the 

behaviour of soil materials will be modelled as particles using the SPH method with reference 

to the previous research. The Bingham fluid model is used as a viscoplastic model of the soil 

material, and the Drucker-Prager soil constitutive model is used to describe the elastic-plastic 

behaviour of the soil. This modelling algorithm uses the equivalent viscosity of the Bingham 

fluid model as the initial stress between particles, and it uses the Drucker-Prager criterion with 

the associated flow rule to describe particle displacement due to slope failure. The soil particles 

are modelled as cohesive soil with a slope angle to the horizontal axis so that they can be 

compared with previous studies. The failure pattern is expected to be able to show areas of 

particles that are not deformed and particles that have collapsed. The FS value of the slope is 

obtained by the strength reduction method which seeks a non-convergent solution of each 

reduction in soil strength parameters. 
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1. Introduction 
 

The calculation approach method in analysing slope stability is generally carried out using 

the limit equilibrium method (LEM) and the finite element method (FEM), which both have 

their respective advantages and disadvantages. LEM can provide an estimation of the safety 

factor without requiring a stress-strain relationship from the soil, but requires assumptions to 

determine the critical slip surface on the slope. On the other hand, FEM does not require initial 
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assumptions for the shape or location of the slip surface of a slope because the failure 

mechanism “looks for” the weakest path in the ground. However, this method also has a 

weakness in large deformation analysis, where excessive distortion of the FEM mesh can lead 

to unstable calculations. 

The smoothed particle hydrodynamics (SPH) method as a mesh-free Lagrangian scheme-

based particle method is an alternative that has begun to be used in analysing slope stability. 

The soil movement behaviour which is modelled as particles can overcome the excess 

distortion of the FEM mesh due to large deformation on slope failure. The computational 

procedure of the SPH method for geo-disaster application and modelling in the book of Huang 

et al. (2014) is divided into two main functions, namely Hydrodynamics SPH Procedure and 

Elasto-plastic SPH Procedure. Bingham fluid constitutive model is commonly used to analyse 

boil flow using the Hydrodynamics SPH Procedure. Meanwhile, the Drucker-Prager model is 

used for soil deformation problems by using the Elasto-plastic SPH Procedure. 

Uzuoka et al. (1998) in their paper modelled liquefied soil as Bingham fluid, which is one 

of the viscoplastic models by considering the minimum undrained strength. In this study, to 

describe the behaviour of soil particles when a landslide occurs on a slope, the Elasto-plastic 

SPH Procedure is used in its programming algorithm with the Drucker-Prager model which 

refers to research that has been developed by Ha H Bui et al. (2008), as well as analysing the 

safety factor using the Strength Reduction Method from the paper Ha Hong Bui et al. (2011). 

 

2. Numerical Approaches 

2.1. Basic Understanding of SPH 
 

The SPH method was first discovered to solve astrophysical problems in three-dimensional 

open spaces, which was later developed for hydrodynamic problems in the form of partial 

differential equations (PDE) of field variables such as density, velocity, energy, and so on (Liu 

& Liu, 2003). Basically, the SPH method is an interpolation theory with two key stages, namely 

kernel approximation and particle approximation. Referring to Liu & Liu (2003), the concept 

of an integrated representation of a function f(x) used in the SPH method can be written with 

the following formula: 

 〈𝑓(𝑥)〉 = ∫ 𝑓(𝑥′)𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′

Ω

 (1) 
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Where Ω is the integral volume containing x, x is the position of the particle (or r), and W is 

the kernel function (smoothing kernel) with smoothing radius h. The function can be written 

numerically as: 

 𝑓(𝑥) =∑
𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗)𝑊(𝑥 − 𝑥𝑗 , ℎ)

𝑛

𝑗=1

 (2) 

The kernel smoothing approach greatly affects the stability, accuracy and speed of the SPH 

method. Ha H Bui et al. (2008) in their paper used the cubic spline function proposed by 

Monaghan and Lattanzio with the following formulations: 

 𝑊𝑖𝑗 =

{
 
 

 
 

5

14𝜋ℎ5
(4ℎ3 − 6𝑟2ℎ + 3𝑟3), 0 ≤ 𝑟/ℎ < 1

5

14𝜋ℎ5
(2ℎ − 𝑟)3,                            1 ≤ 𝑟/ℎ < 2

0,                                                                  𝑟/ℎ ≥ 2

 (3) 

 

2.2. Governing Equations 
 

In the elasto-plastic SPH model, the soil governing equation consists of the equation for 

the conservation of mass and momentum. Conservation of mass is the basis of the following 

continuity equation: 

 
𝜕𝜌

𝜕𝑡
= −𝜌

𝜕𝑣𝛼

𝜕𝑥𝛼
 (4) 

and conservation of momentum is the basis of the equation for ground motion as follows: 

 
𝜕𝑣𝛼

𝜕𝑡
=
1

𝜌

𝜕𝜎𝛼𝛽

𝜕𝑥𝛼
+ 𝐹 (5) 

where 𝛼 and 𝛽 are Cartesian components x, y and z; 𝜌 is the density of the soil; 𝑣 represents 

the velocity vector; 𝜎 is the total stress tensor and F external force vector which is the 

gravitational force in this study. The discretization of equations (4) and (5) in the formulation 

of SPH is shown in equations (6) and (7) respectively: 

  
𝐷𝜌

𝐷𝑡
= −∑𝑚𝑗(𝑣𝑖

𝛼 − 𝑣𝑖
𝛼)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑗
𝛼

𝑁

𝛽

 (6) 

 𝐷𝑣𝑖
∝

𝐷𝑡
=∑𝑚𝑗 (

𝜎𝑖
𝛼𝛽

𝜌𝑖
2 +

𝜎𝑗
𝛼𝛽

𝜌𝑗
2 − 𝛿𝛼𝛽Π𝑖𝑗)

𝜕𝑊𝑖𝑗

𝜕𝑥𝑗
𝛽
+ 𝑔𝛼

𝑁

𝑗=1

 

(7) 

𝛿𝛼𝛽 is Kronecker's delta which has a value of 𝛿𝛼𝛽 = 1 if 𝛼 = 𝛽, and 𝛿𝛼𝛽 = 0 if 𝛼 ≠ 𝛽. To 

prevent numerical oscillations and penetration between particles, Huang et al. (2014) added 
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artificial viscosity Π𝑖𝑗 in terms of pressure to the equation of motion to convert kinetic energy 

into heat. This viscosity is defined as follows: 

 Π𝑖𝑗 =
−𝑎𝑐̅𝜇𝑖𝑗 + 𝑏(𝜇𝑖𝑗)

2

𝜌𝛼𝛽̅̅ ̅̅ ̅
 (8) 

 
𝜇𝑖𝑗 =

ℎ(𝑣𝑖 − 𝑣𝑗)√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + 𝑘ℎ2
 

(9) 

 
𝑐̅ =

1

2
(𝑐𝑖 − 𝑐𝑗)    dan   𝜌̅ =

1

2
(𝜌𝑖 − 𝜌𝑗) 

(10) 

where 𝑎 and 𝑏 are constant parameters suggested by Monaghan with a value close to 1 for the 

most stable results. k is an independent parameter which avoids numerical drift when the 

particles approach each other with the value suggested by Liu & Liu (2003) of 0.01. 𝑐𝑖 and 𝑐𝑗 

are the speed of sound at points i and j with a range of 450-600 m/s, which in the paper of Ha 

H Bui et al. (2008) take the maximum value of 600 m/s 

 

2.3. Soil Constitutive Model 
 

In the Elasto-plastic SPH Procedure, the Drucker-Prager constitutive model is chosen in 

this study as a reference to describe the soil flow behaviour in the soil yield criteria. This yield 

condition is stated as: 

 𝑓(𝐼1, 𝐽2) = √𝐽2 + 𝛼𝜙𝐼1 − 𝑘𝑐 = 0 (11) 

 𝐼1 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧   and   𝐽2 =
1

2
𝑠𝛼𝛽𝑠𝛼𝛽 (12) 

 𝛼𝜙 =
tan𝜙

√9 + 12 tan2𝜙
   and   𝑘𝑐 =

3𝑐

√9 + 12 tan2𝜙
 (13) 

𝛼𝜙 and 𝑘𝑐 are Drucker-Prager constants, which correspond to the Coulomb material constants 

c (cohesion) and ϕ (angle of friction). 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧 are three normal stress components and 

𝑠𝛼𝛽 are deviatoric shear stress rate tensor. 

Deviatoric shear stress in the paper of Zubeldia et al. (2018) is referred to 𝜏𝛼𝛽 to find the 

second invariant 𝐽2. The value of 𝜏𝛼𝛽 itself is obtained from the rheological constitutive model 

presented by Yang et al. (2020) with the following formulas: 

 𝜏𝛼𝛽 = 2𝜂𝜀̇𝛼𝛽  (14) 

 𝜂 =
𝜇𝑃

√𝜀̇𝛼𝛽𝜀̇𝛼𝛽
 (15) 

 𝑃𝑖 = 𝑐
2(𝜌𝑖 − 𝜌0) (16) 
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𝜇 = 𝜇𝑠 +

𝜇𝑝 − 𝜇𝑠
𝐼0
𝐼𝑖
+ 1

 
(17) 

 𝐼𝑖 =
𝑑√𝜀̇𝛼𝛽𝜀̇𝛼𝛽

√𝑃𝑖 𝜌0⁄
 (18) 

where 𝜂 is an apparent viscosity; 𝑃 is the isotropic pressure; 𝑐 is the kecepatan suara; 𝜌𝑖 is the 

density of particle i; 𝜌0 is the reference density of the material; 𝜇 is a frictional function that 

depends on the inertial number, 𝐼𝑖; 𝑑 is the real grain diameter; dan 𝜇𝑠, 𝜇𝑝, dan 𝐼0 are constants. 

Soil behaviour in this constitutive model is then described by the relationship between 

stress and strain in the soil material. The full yield strain 𝜀̇𝛼𝛽 consists of 2 parts, namely the 

elastic strain 𝜀𝑒̇
𝛼𝛽

 and the plastic strain 𝜀𝑝̇
𝛼𝛽

 as in the following equation: 

 𝜀̇𝛼𝛽 = 𝜀𝑒̇
𝛼𝛽
+ 𝜀𝑝̇

𝛼𝛽
 (19) 

 
𝜀̇𝛼𝛽 =

𝑠̇𝛼𝛽

2𝐺
+
1 − 2𝑣

3𝐸
𝜎̇𝛾𝛾𝛿𝛼𝛽 + 𝜆̇

𝜕𝑔

𝜕𝜎𝛼𝛽
 

(20) 

The total stress tensor in equation (21) is then rearranged with equation (20) to produce a 

stress-strain relationship for a perfectly elastic-plastic material as in equation (22). 

 
𝜎𝛼𝛽 = 𝑠𝛼𝛽 +

1

3
𝜎𝛾𝛾𝛿𝛼𝛽 

(21) 

 
𝜎𝛼𝛽 = 2𝐺𝑒̇𝛼𝛽 +𝐾𝜀̇𝛾𝛾𝛿𝛼𝛽 − 𝜆̇ [(𝐾 −

2𝐺

3
)
𝜕𝑔

𝜕𝜎𝑚𝑛
𝛿𝑚𝑛𝛿𝛼𝛽 + 2𝐺

𝜕𝑔

𝜕𝜎𝛼𝛽
] (22) 

where 𝛼, 𝛽 are the free indices and m, n are the dummy indexes. 𝑒̇𝛼𝛽 is a deviatoric shear strain 

rate tensor with 𝑒̇𝛼𝛽 = 𝜀̇𝛼𝛽 −
1

3
𝜀̇𝛾𝛾𝛿𝛼𝛽. 𝐾 is the elastic bulk modulus, which corresponds to 

the shear modulus 𝐺 and Poisson's ratio 𝑣 in the following equation: 

 𝐾 =
𝐸

3(1 − 2𝑣)
   and   𝐺 =

𝐸

2(1 + 𝑣)
 (23) 

The associated plastic flow rule which shows the plastic potential function of the Drucker-

Prager material has the same shape as the yield criteria as follows: 

 𝑔 = √𝐽2 + 𝛼𝜙𝐼1 − 𝑘𝑐 (24) 

Equation (24) is then substituted into equation (22) which produces the final stress-strain 

relationship of the Drucker-Prager perfect elastic-plastic soil model with the associated plastic 

flow rule (25). 

 𝜎𝛼𝛽 = 2𝐺𝑒̇𝛼𝛽 + 𝐾𝜀̇𝛾𝛾𝛿𝛼𝛽 − 𝜆̇ [3𝛼𝜙𝐾𝛿
𝛼𝛽 +

𝐺

√𝐽2
𝑠𝛼𝛽] (25) 
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With the plastic multiplier change rate 𝜆̇ for the associated plastic flow rule which is shown in 

the following equation: 

 𝜆̇𝑖 =
3𝛼𝜙𝐾𝜀𝑖̇

𝛾𝛾 + (𝐺 √𝐽2⁄ )𝑠𝑖
𝛼𝛽
𝜀𝑖̇
𝛼𝛽

9𝛼𝜙
2𝐾+ 𝐺

 (26) 

The strain and spin rate tensors of a particle are formulated in the SPH equation as follows 

 𝜀̇𝛼𝛽 =
1

2
[∑

𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛼 − 𝑣𝑖
𝛼)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛽

𝑁

𝑗=1

+∑
𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛽
− 𝑣𝑖

𝛽
)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛼

𝑁

𝑗=1

] (27) 

 

𝜔̇𝛼𝛽 =
1

2
[∑

𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛼 − 𝑣𝑖
𝛼)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛽

𝑁

𝑗=1

−∑
𝑚𝑗

𝜌𝑗
(𝑣𝑗

𝛽
− 𝑣𝑖

𝛽
)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛼

𝑁

𝑗=1

] 

(28) 

So that the final form of the SPH formulation for a particular particle i in the stress-strain 

relationship for the associated flow rule soil model is then stated as follows: 

𝐷𝜎𝑖
𝛼𝛽

𝐷𝑡
= 𝜎𝑖

𝛼𝛾
𝜔̇𝑖
𝛽𝛾
+ 𝜎𝑖

𝛾𝛽
𝜔̇𝑖
𝛾𝛼
+ 2𝐺𝑒̇𝑖

𝛼𝛽
+ 𝐾𝜀𝑖̇

𝛾𝛾
𝛿𝑖
𝛼𝛽
− 𝜆̇𝑖 [3𝛼𝜙𝐾𝛿

𝛼𝛽 +
𝐺

√𝐽2
𝑠𝑖
𝛼𝛽
] (29) 

The position of the particles in the SPH itself is moved according to the following equation: 

 𝑑𝑥𝑖
𝛼

𝑑𝑡
= 𝑣𝑖

𝛼 
(30) 

 

2.4. Shear Strength Reduction Method 
 

The reduced soil strength along with the movement of the soil on a slope in analysing the 

stability of the slope can be described by the shear strength reduction method. The use of this 

method in the SPH method is basically the same as FEM, where in the Griffiths & Lane (1999) 

paper the analysed value of the slope safety factor is determined when there is a drastic increase 

in dimensionless displacement so that the algorithm cannot converge within the iteration limits. 

The soil movement in the SPH method is described by the movement of soil particles that 

gets farther along with the addition of a certain time step in the calculation. Each of these 

calculations is carried out with a reduced shear strength parameter value, namely 𝑐𝑡 and 𝜙𝑡 

which is stated by the following formula: 

 𝑐𝑡 =
𝑐

𝑆𝑅𝐹
   dan   𝜙𝑡 = tan

−1 (
tan𝜙

𝑆𝑅𝐹
) (31) 

Where 𝑐 and 𝜙 are the parameters of the initial shear strength values, and SRF is the strength 

reduction factor. This SRF value will be inputted with a low value, then gradually increased as 

the slope conditions become increasingly unstable until slope failure occurs. 
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3. Methodology 
 

SPH modelling in this study is carried out using the FORTRAN programming language 

using the Absoft Pro-FORTRAN program, where the source code used is a recycle from 

previous research at the University of Indonesia. The modelling algorithm is depicted in the 

following flow chart: 

 

Figure 1. Program Algorithm 
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In the first stage, identification of computational problems is carried out by inputting 

parameters, determining variables, and the initial condition of the particles before the start of 

the simulation. The calculation of the Drucker-Prager constants, bulk modulus and shear 

modulus is carried out at this initial stage before the iteration begins. The t notation is the 

number of iterations performed in the simulation of this program. Particle i is the main particle 

under study, while particle j is the neighboring particle that is within the radius of the reviewed 

particle's kernel. 

The iteration of the program starts at the next stage which begins with calculating the 

distance of the particles that will be used in the smoothing function to calculate density. Particle 

stress calculation is done after the density is obtained.  

The next step is to calculate the strain rate and spin rate tensors of each particle. Rheological 

model calculations are performed to obtain deviatoric stress, and the rate of change of plastic 

multiplier is calculated for use in stress-strain relationships. The stress that occurs on the 

particles is obtained from the calculation of the stress-strain relationship. 

The Jaumann stress rate is then used with respect to the rigid-body rotation that occurs in 

the particle when it is subjected to stress. Acceleration and velocity calculations are performed 

after the particle stress is obtained. Then performed time integration and collision handling for 

particle movement. The update of the particle position is then carried out for each iteration time 

to see the particle displacement. 

 

4. Discussion  
 

The SPH modelling program carried out in this study is actually still in progress. If the 

program using the elasto-plastic SPH procedure has been completed, it is expected that the 

displacement of collapsed particles and particles that are still stable can be seen as a slip-surface 

of the slope stability being modelled.  

The shear strength reduction method will then be performed by analysing the convergent / 

non-convergent properties of the change in particle displacement at a certain iteration stage. If 

the displacement change is smaller than the previous iteration stage, where the displacement-

iteration relationship graph shows a convex shape which means providing a convergent SPH 

solution, then the SPH calculation process is carried out again with a larger SRF (Strength 

Reduction Factor) value. If the displacement change at a certain iteration stage reaches a higher 

value than the previous iteration stage, where the displacement-iteration relationship graph 
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shows a concave shape which means providing a non-convergent SPH solution, then the SRF 

value at that stage is taken as a safety factor. 

There are several obstacles faced in the development of this program, where the stress 

calculation on modelling that has been made at the University of Indonesia using the 

hydrodynamics SPH procedure, is only done in the x, y and z directions. Whereas in the elasto-

plastic SPH procedure as has been done by Ha H Bui et al. (2008) used a rank-2 tensor in the 

calculation of stress-strain relationships, so it was quite confusing when calculating the 

acceleration and velocity of the particles.  

 

5. Conclusion 
 

The development of slope failure modelling using Smoothed Particle Hydrodynamics is 

still very open to improvement. The use of the elasto-plastic SPH procedure in this study is an 

attempt to simulate slope failure as closely as possible to the behaviour of soil particles when 

subjected to large deformations. The use of the Drucker-Prager constitutive model is an 

alternative to the use of the Bingham fluid model that has been developed at the University of 

Indonesia. The use of soil parameters such as cohesion, shear angle, modulus of elasticity, and 

Poisson's ratio which had not been used in previous source program were then used in this 

study. The search for the value of the safety factor using the strength reduction method will 

also be carried out in line with the current development of the program. 
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