Effects of Forbush Decreases on Atmospheric Aerosols and Clouds as determined from PATMOS-x

Haruka Matsumoto, Henrik Svensmark, Martin B. Enghoff

Cosmic rays are thought to affect cloud formation on Earth through ionization and aerosol interaction processes. Forbush Decreases (FDs) which are sudden decreases in cosmic rays, caused by solar eruption have previously been shown to affect cloud microphysics, cloud fractions, aerosol optical depth, CCN, water content, and cloud effective radius in the atmosphere.

Bootstrapping (Monte Carlo simulation) is applied to atmospheric parameters from newly calibrated PATMOS-x data from satellites from 1978 to 2018 to evaluate the existence of a significance response level to FDs from Achieved Significance Levels (ASLs).

Future work: Cloud processing theory might be able to beyond the scope of this study. We use DESCAM model to investigate if there are any agreement between the cloud microphysics and observations.

Email: harmat@space.dtu.dk

1. Svensmark, H., Bondo, T., & Svensmark, J., Cosmic ray decreases affect atmospheric aerosols and clouds. Geophysical Research Letters, 36(15)

* Shadow area is integrated as signal in bootstrap analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ASL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud emissivity</td>
<td>99.99%</td>
</tr>
<tr>
<td>AOD due to cloud</td>
<td>77.03%</td>
</tr>
<tr>
<td>Integrated total cloud water over the whole column</td>
<td>92.51%</td>
</tr>
<tr>
<td>Optical thickness of cloud condensed water particles at cloud top</td>
<td>60.27%</td>
</tr>
<tr>
<td>Effective radius of cloud condensed water particles at cloud top</td>
<td>99.99%</td>
</tr>
</tbody>
</table>