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Combining Remote Sensing with Webdata and Machine Learning to Support

Humanitarian Relief Work

Jens Kersten!(jens.kersten@dir.de), Malin Kopitzsch?!, Jan Bongard?!, and Friederike Klan!

Research Context

DLR-Project DatadHuman: Demand-driven
data services for humanitarian aid [1]

Involved partners:
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Scope

* Current data collection and analysis mainly
based on remote sensing, geospatial and in-
situ data

* Webdata and social media potentially adds
value in monitoring natural and man-made
disasters [2,3,4]

* General Issues: Limited resources, data
overload and bias, missing or uncertain
location information, trustworthiness, ....

Addressed guestions (Fig. 1):

* What are the current information gaps and
user needs?

* How can these gaps be complemented by
webdata and corresponding ML methods?

* What are the potentials, benefits and
weaknesses, especially for social media
data?

Scenarios and Data

Focus Area: Mozambique, Africa (Fig. 2)

Incident types:

* Natural disasters: Cyclones ldai & Kenneth,
March-May 2019

* Conflicts, humanitarian crises & security-
related incidents

Data sources:
1) GEDELT [5]:
* Live, global event database
* Broadcast, print, online news
* 60+ languages
2) Twitter:
* Worldwide & immediate platform
* 1 % live stream + full history archive
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Fig. 2: Map and AOI of the study area Mozambique.

Needs Assessment Results

* Natural disasters already well covered, but
iInformation gaps possible

* Desired: A better description of conflicts and
human behavior

* Relevant and helpful: Local information
* Impact, needs & damage assessment
* Health-related content
* Information on injuries and death toll
* Detection and monitoring of security-
related incidents, social domino effects,
armed clashes, ......
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Fig. 3: Workflow for news article and tweet analyses.

Data Analysis Methods

We utilize state-of-the-art ML methods to
address common practical issues, like
overload reduction, content analysis, and
data aggregation/contextualization (Fig. 3):

1) Overload Reduction
* Binary classification models [6]
* Location and keywords

2)_Classification
* Deep Learning Models [7]
* Information type, source, priority
* Multi-class, -label and -task models

3) Stream Analysis [8]
* Semantic clustering of Twitter stream data
* Embeddings-based text representation
* Merging and linking of clusters
* Topic detection and tracking
* Topic and stream summarization

First Results

Collected data (March 15 - May 15, 2019):
* ~2.3 GB/day (1% worldwide Twitter stream)
* ~200k news articles/day (GDELT)

1) Twitter

* Filtering by geolocation (Fig. 2)

* Fl-score ~ 0.83, but expected to be lower
in case of new event types not yet covered
in training data [6]

* After overload reduction (binary
classification): ~7,000 potentially relevant
Tweets identified = to be investigated

2) GDELT
* Filtering by keywords & locations (Fig. 2)
* Web-scaping of news articles
* Application of binary ML model to identify
potentially relevant news articles
* Fl-score ~ 0.83
* Result products: daily/weekly maps (Fig. 4)

* Despite data sparsity, Twitter tends to add
more value (impact assessment)

* Information overload reduction is definitely
required, but just the starting point for
further in depth-analyses that allow to gain
valid and localized information from
unstructured stream data

* Besides the type of information contained in
a tweet (e.g. help needed), also the source
type (e.g. first party observation or
governmental) is crucial

Fig. 1: Main question of this work: How to complement, enrich and fill gaps of existing workflows?
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Fig. 4: Interactive example map representing four
crisis-related news articles (GDELT) published March
15, 2019, Beira, Mozambique.

Conclusions and Outlook

* Current ML models are well suited to
analyze the content of microblogs and news
articles

* Each NGO addresses different questions
- flexible methods required

* Adaptive stream analysis, clustering and
summarization is required, in order to better
understand single information snippets
— noise reduction and validation

* Future work will focus on tweet classification
and Twitter stream analysis (quantitative
experiments)

* A prototypical workflow according to Fig. 3
will be implemented in order to analyze
historical and live stream data
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