Temporal Changes in Interior Dissolved Inorganic Carbon

Lydia Keppler¹, P. Landschützer¹, N. Gruber², S. K. Lauvset³

¹ Max-Planck-Institute for Meteorology, Hamburg, Germany ² Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland ³ NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway

Oceanic carbon is highly variable

- The seasonal cycle is the largest signal in the natural carbon cycle in the ocean
 - → What does the dissolved inorganic carbon (DIC) seasonal cycle look like at global scale?
 - → Can we estimate the biological draw-down of carbon (spring-to-fall NCP)?

- Air-sea flux: large interannual to decadal variability
 - \rightarrow Is this reflected in the DIC pool?

Previous global observation-based studies of oceanic carbon

- Surface products (e.g., Landschützer et al., 2014)
- Interior DIC climatology, not time-varying (Lauvset et al., 2016)
- Monthly climatology of DIC (Broullón et al., 2020)
- **Decadal** changes of interior **C**_{ant} (e.g., <u>Gruber et al., 2019</u>)
 - → We want **time-varying** (monthly to interannual) mapped fields of **total contemporary DIC** (natural + anthropogenic) at global scale

Adapted from Gruber et al. (2019)

Mapped Observation-Based Oceanic DIC (MOBO-DIC)

- Adaptation of SOM-FFN by Landschützer et al. (2014)
- **MOBO-DIC_monthly_clim** (Keppler et al., 2020a): Monthly climatology; until 2000 m
- **MOBO-DIC_2014-2018**: Monthly fields from 2004 through 2018, until 1500 m (in prep.)

Validation with independent observations

SOCCOM floats

Validation with synthetic data

- Forced with reanalysis atmosphere

Seasonal cycle of surface DIC

- Spring Maximum: due to deep mixing throughout winter
- Fall Minimum: due to biological draw-down of carbon throughout summer

Adapted from Keppler et al. (2020b)

Spring-to-fall NCP

Interannual variability

 DIC_{s}

Interannual variability

 \rightarrow very little variability except in the thermocline of the western tropical Pacific

Adapted from Keppler et al. (in prep.)

Link to the El Niño Southern Oscillation

Link to the El Niño Southern Oscillation (cont.)

- Mechanism:
- During El Niño years (+ MEI) the tradewinds weaken, the warm . pool in the the western tropical Pacific moves east, SSTs increase, and the thermocline flattens (shallower in the west)
- At the surface, this results less carbon uptake (as CO₂ is less • soluble in warmer waters), but the effect at the surface is buffered by mixing and biology
- **The shallower thermocline** in the weastern tropical Pacific • results in more DIC in between 50 and 250m in this region (DIC stored at depth comes up)
- In the deeper water, the signal reduces due to mixing and • transport

Why is there no signal in the Peruvian Coastal Upwelling System?

Here, two processes compete and cancel out: less upwelling • during El Niño leads to less DIC in the upper waters; concurrently, a deeper thermocline here results in more DIC in the upper waters:

12

Trend in DIC_s (2004 through 2018)

Summary

- **New paper out**: Seasonal Carbon Dynamics in the Near-Global Ocean (Keppler et al., 2020)
- New data set: Monthly climatology of Mapped Observation-Based Oceanic DIC (MOBO-DIC) → NCEI-OCADS
- Seasonal surface DIC amplitudes range from 0 to more than 50 μmol kg⁻¹ (spring maximum, fall minimum)
- MOBO-DIC yields a spring-to-fall NCP in the euphotic zone of the mid-latitudes of 3.9±2.7 Pg C yr⁻¹
- Interannual variability of interior DIC mostly weak; exception: sub-surface tropical Pacific (link to ENSO)
- Increase of total DIC_s from 2004 through 2018 (upper 1500 m): 25 Pg C decade⁻¹

Global Biogeochemical Cycles

