Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability

Jonas Hamperl¹, Myriam Raybaut¹, Jean-Baptiste Dherbecourt¹, Patrick Chazette², Julien Totems² and Cyrille Flamant³

¹ DPHY, ONERA, Université Paris Saclay, F-91123 Palaiseau, France
² Laboratoire des Sciences du Climat et de l’Environnement (LSCE), UMR 1572, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
³ Laboratoire Atmosphères Milieux et Observations Spatiales (LATMOS), UMR 8190, CNRS-SU-UVSQ, Paris, France

Contact: jonas.hamperl@onera.fr

27 April 2021
Introduction

Water Vapor and Isotope Lidar (WaVIL)

- Ground-based differential absorption lidar (DIAL) for water isotopologues H_2^{16}O and HD^{16}O in the lower troposphere (currently under development)
- Would allow the retrieval of vertical $\text{H}_2\text{O}/\text{HDO}$ profiles and the isotopic ratio (HDO abundance in terms of δD)
- Can complement existing measurement methods (in-situ with CRDS, passive remote sensing)
- Operation wavelength: 1.98 μm
- Resolution: 150 m / 10 min

Project link: https://anr.fr/Project-ANR-16-CE01-0009

Optical depth over 1 km with uniform H_2O volume mixing ratio of 0.85% (15ºC, 1013.25 hPa, HITRAN 2016 spectroscopic database). Vertical lines indicate positions of off-line, HDO on-line, and H_2O on-line wavelengths.
Lidar setup

Key requirements for range-resolved DIAL:
- Laser energies in the tens of mJ at 2 µm
- High detection sensitivity at 2 µm

Lidar transmitter:
- High-energy, single-frequency parametric source
- Approach: parametric conversion and amplification
 - nested cavity optical parametric oscillator (NesCOPO): pulsed, tunable source in the mid-IR
 - high-aperture PPKTP crystals: optical parametric amplification (OPA)

Lidar receiver:
- Cassegrain-type telescope (40 cm diameter)
- Detector: InGaAs pin photodiode (HgCdTe avalanche photodiode considered as an option in our simulations)

Previous demonstrations: E. Cadiou et al.: Multiple-species DIAL for H2O, CO2, and CH4 remote sensing in the 1.98–2.30 µm spectral range. LACSEA Optical Society of America, 2018
Lidar simulations

- University of Wyoming or Météo-France: Atmospheric sounding profiles (p, T, WVMR)
- AERONET: Aerosol optical depth
- L-WAIVE field campaign: (p, T, H_2O/HDO, aerosols)
- HITRAN 2016: Absorption cross-sections

Atmosphere model
- Pressure
- Temperature
- Mixing ratios (H_2O/HDO)
- Aerosol backscatter/extinction coefficient

Instrument model
- Pulse energy
- Repetition rate
- Laser divergence
- Telescope size
- FOV
- Filtering

Absorption optical depth calculation

Detector model
- Detector type
- Bandwidth
- Noise characteristics

Lidar equation

SNR calculation

VMR precision
Simulation parameters

Instrument parameters:

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>i)</td>
</tr>
<tr>
<td>Energy</td>
<td>10–20 mJ</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>10 ns</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>150 Hz</td>
</tr>
<tr>
<td>λ_{on} (H_2O) (1)</td>
<td>1982.93 nm</td>
</tr>
<tr>
<td>λ_{on} (H_2O) (2)</td>
<td>1982.97 nm</td>
</tr>
<tr>
<td>λ_{on} (HD_{16}O)</td>
<td>1982.47 nm</td>
</tr>
<tr>
<td>λ_{off}</td>
<td>1982.25 nm</td>
</tr>
<tr>
<td>Divergence</td>
<td>270 µrad</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atmospheric parameters:

- We used mid-latitude, tropic, and arctic model environments accounting for both vertical water vapor and aerosol variability. We constructed vertical profiles of aerosol extinction and backscatter coefficients constrained by the aerosol optical depth from the AERONET database for different locations (extrapolated to the 2 µm wavelength region).
- We also used vertical profiles of H$_2$O/HDO and aerosol extinction profiles obtained during a recent field campaign to demonstrate the potential of the lidar system.
Simulation results: sensitivity to different environmental parameters

Example results for mid-latitude model (20 mJ laser energy, 10 min integration time, InGaAs PIN detector):

1. Hypothetical aerosol extinction profiles assuming half-Gaussian distribution within the planetary boundary layer (PBL, <2 km) for different aerosol optical depths (AOD). Dust scenario incorporates elevated layer of aerosols on top of the PBL. Extinction profiles serve to calculate lidar backscatter coefficients.

2. Relative random error (precision) on mixing ratios of H$_2$O and HDO for baseline atmospheric model (median AOD, average humidity).

3. Precision on H$_2$O mixing ratio depending on different aerosol loads. Elevated dust gives rise to higher sensitivity above PBL.

![Graphs showing extinction profiles, mixing ratios, and precision](image)

Relative precision in H$_2$O VMR measurement for 3 baseline models:

Achievable precisions vary by an order of magnitude between tropic (highest precision) and arctic (lowest) conditions.
Simulation results: precision estimate using field campaign profiles

- We used water vapor mixing ratio profiles (1a) and columns of HDO abundance obtained during the recent L-WAIVE* field campaign to simulate the achievable precision with the WaVIL instrument.
- Simulations also incorporate aerosol extinction/backscatter data (1b) measured by lidar (extrapolated to 2 µm using Angstrom exponent from sun-photometer products).
- As shown in (2), precisions achievable high enough to resolve vertical variations in HDO abundance.
- Calculations based on: 20 mJ laser energy, 10 min integration time, 1 MHz bandwidth (150 m spatial resolution).

Profiles obtained during L-WAIVE field campaign serve as input for our lidar simulator.

Calculated precision (shaded area, expressed as standard deviation) on HDO abundance for different detectors.
Conclusions

- Water Vapor and Isotope Lidar (WaVIL) under development for range-resolved measurements of the water vapor main isotope and its isotope HDO in the lower troposphere by differential absorption technique
- Isotope observations by lidar will enhance the comprehension of the water vapor budget and offer the potential to complement current in-situ observations
- Spectral range around 1.98 µm for addressing H$_2$O and HDO absorption lines
- Expected resolution: 150 m / 10 min
- Simulations indicate that relative random errors <1% on the H$_2$O VMR are achievable within the boundary layer (0-2 km)
- Sensitivity varies by one order of magnitude between tropic (highest precision) and arctic (lowest) atmospheric conditions
- By using H$_2$O/HDO profiles obtained during a field campaign we demonstrated the potential of the WaVIL instrument to deliver high-precision, range-resolved measurements of the isotopic ratio in terms of δD (few ‰)
This work was partially funded through WAVIL project: ANR grant Nr. ANR-16-CE01-0009 and has received funding from the European Union's Horizon 2020 research and innovation program under grand agreement Nr. 821868.