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This project aims to 
establish a method to fit 

joint distribution function 
of several rainfall event 

characteristics.

Marginal distributions are 
analysed by L-moment 

ratios, while dependence 
between variables is 

represented through Vine 
Copula.

Rainfall events are defined 
by event-based variables 

such as
Intensity and Total Depth.

Their internal variability is 
described temporally on 
the hyetograph through 

temporal moments.

They aim to describe 
features like the rainfall 

center of mass or whether 
events are 

unimodal/bimodal.

The spatial internal 
variability is also taken into 

account by considering 
spatial moments, 

computed about  time-
averaged rainfall intensity.

Eventually this information 
would be used to link flood 

frequency with those 
associated to rainfall 

events.
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Project context
Flood distribution function can be studied and estimated by derived flood frequency
method, firstly described by Eagleson (1972) and then adopted, among many, by
Sivapalan et al. (2005).

This approach is based on derived distribution theory and relates peak streamflow
statistics with those of climate and catchment antecedent conditions. The main
advantage introduced by this method is to understand which processes are dominant to
flood frequency behaviour. Its application requires knowledge of both rainfall
distribution and rainfall-runoff transformation.
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Derived Flood Frequency approach, 
as described by Sivapalan et al. (2005)
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Project context
Peak flow estimation methods usually define rainfall events by prespecified ad-hoc
temporal and spatial patterns, along with relevant intensity-duration-frequency (IDF)
curves. Some example of these patterns are represented by Chicago hyetograph and
areal reduction factor usage. We complement the standard precipitation metrics of
intensity, duration or total depth with spatial and temporal moments, which give
indication of rainfall event spatial and temporal internal variability. These properties are
associated to streamflow response and its timing (Viglione et al., 2010).
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Project goals and datasets

The aim of this project is to determine a
methodology to fit multivariate joint cumulative
distribution of rainfall events, which in turn are
defined as sets of characteristics such intensity, total
depth, spatial and temporal moments. This task
would require also the definition of their marginal
distributions. The statistical approach developed
within this project is intended to be generally
applicable on any other set of catchments.

Datasets:
• 15-min streamflow data series were provided by

Environmental Agency.
• Hourly rainfall gridded data were interpolated and

distributed by Lewis et al. (2018).
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Case studies

The analysis is undertaken over 523 United Kingdom
(UK) catchments with an area ranging up to 1505
km2, during 25-year period from 1990 to 2014.

The distribution analysis was undertaken only on 112
out of 523 UK catchments (UKBN2 set), chosen from
the UK Benchmark network 2 (UKBN2) (Harrigan et
al., 2018), which includes stations most suited for
long-term hydrological analysis on changes and
variability.

The remainding 411 basins (NRFA set) represent
stations from National Flow River Archive (NRFA) as
well and were used to test distribution model
goodness-of-fit.
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UKBN2 set

NRFA set



Event selection procedure
Rainfall events are identified using a Minimum Inter-event Time (MIT), the minimum
number of hours of zero rainfall to separate rainfall events. We set the MIT equal to
catchment response time Tr, computed following the methodology by Giani et al. (2021).
We often see when taking this approach that, if the inter-event time is shorter than the
response time, the two rainfall contributions will be part of the same hydrograph; if
instead the same two rainfall contributions have an inter-event time that is longer than
the catchment response time, we will likely find two separate peaks in the hydrograph.
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Spatial moments of catchment rainfall
They were firstly defined by Zoccatelli et al. (2011) and aim to represent spatial rainfall
event distribution measured along the flow path. They are both dimensionless and can
assume only positive values.

First spatial moment Δ1 > 1 indicates storm is mainly located towards the headwater,
while Δ1 < 1 when the event is spatially closer to the outlet. When second spatial
moment Δ2 > 1 rainfall event is bimodal, having two top intensity values, vice versa Δ2 <
1 indicates a unimodal trend with only one spatial peak. Spatially uniform events are
characterised by Δ1 ≈ 1 and Δ2 ≈ 1.
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Pictures on the right show
elevation and flow distance maps
of Scottish catchment (NRFA ID.
15023), with time-average rainfall
intensity of two selected events
reported below, along with their
moment values.



Temporal moments of catchment rainfall
Analogously to those introduced before, these moments aim to represent temporal
rainfall event distribution measured along the hyetograph. They are both dimensionless
and can assume only positive values.
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First temporal moment T1 > 1 indicates
storm is mainly distributed after the
event half-time, while T1 < 1 when the
event is occurring mainly within the first
half.

When second temporal moment T2 > 1
rainfall event is bimodal, having two top
intensity values, vice versa T2 < 1
indicates a unimodal trend with only one
hyetograph peak. Temporally uniform
events are characterised by T1 ≈ 1 and T2

≈ 1.

On the right all the six possible events are
shown with their related moment values.



Best parametric models were chosen
accordingly best RMSE among all the
tested families. Results suggest
intensity is represented by
Generalised Normal (GNO), total
depth by Generalised Pareto (GPA),
spatial and temporal moments by
Pearson type 3 model (PE3).

Marginal distributions analysis
After having extracted 2966436 spatially uniform rainfall events over 112 UKBN2 basins
data availability, their intensity, total depth, temporal and spatial moments were
selected for each catchment. Those characteristic marginal distributions were studied
through L-moments and represented on L-moments ratio diagram (Hosking & Wallis,
1997).
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Multivariate joint distribution analysis
Joint distribution aims to describe dependence between a set of random variables. Vine
copula is a very flexible and promising tool for multivariate dependence analysis, given
its capability to describe high number of variables (Hao & Singh, 2016). It can specify a
whole degree of dependence with one multiblock structure made by bivariate building
blocks, in turn specified by simpler copulas with their set of parameters (Czado, 2019).
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A graphical example of one possible 
Vine is reported on the right. This is an 
example of D-Vine fitted for 5 random 
variables(1, 2, 3, 4 and 5). It can be 
noticed how Vines are always 
characterised by n - 1 trees (T1, T2, T3

and T4), with n = number of random 
variables. Edges represent bivariate 
copula distributions while nodes are 
variables. Edges of j-th tree become 
nodes in (j + 1)-th tree.

Czado (2019)



Multivariate joint distribution analysis
First step was to define a truncation level for the whole distribution. This is specifically
the j-th tree beyond which all edges would be represented by independence copulas,
which are parameter-free. This is done in favour of parsimony (less parameters) but also
because most dependencies are usually represented already within lower order trees
(Brechmann et al., 2012).

Following the approach of
Brechmann et al. (2012),
truncation level was indicated
as Tree 3 to be the best for
most of the case studies. Trees
structure selection was
performed by means of
Dißmann’s algorithm, with BIC
set as selection criterion.
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Multivariate joint distribution analysis
Eventually it was chosen the joint distribution configuration which was more frequently
fitted over the whole set of basins, in terms of both established relations (edges) and
selected bivariate parametric copula families.
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Int = Mean Intensity
TD = Total Depth
T1 = First temporal moment
T2 = Second temporal moment
D1 = First spatial moment
D2 = Second spatial moment



Goodness-of-fit comparison
The outlined model was tested in terms of its goodness-of-fit on both 112 basins
selected from UKBN2(UKBN2 set) and remainder 411 catchments(NRFA set). The
goodness-of-fit was computed as RMSE for every rainfall characteristics and the final
Vine structure. The fitted models were compared against their empirical cumulative
distribution function for marginals, while Vine was compared against its empirical
copula.

The results show how
goodness-of-fit on both
sets of catchments is very
similar. Overall, that
suggests models inferenced
by the analysis have the
potential of representing
rainfall characteristic
distributions and their
dependences.
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Conclusions and future works
This project has highlighted:

1. A methodology to fit joint distribution function for rainfall event features, along
with their marginal distribution functions as well.

2. A joint distribution model valid for UK case of study, which appears to be suitable
for spatially uniform rainfall event characteristics and smaller catchments.

These tools can be exploited within the derived flood frequency method (see Woods &
Sivapalan, 1999), in order to randomly generate hydrologically-relevant rainfall events.
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