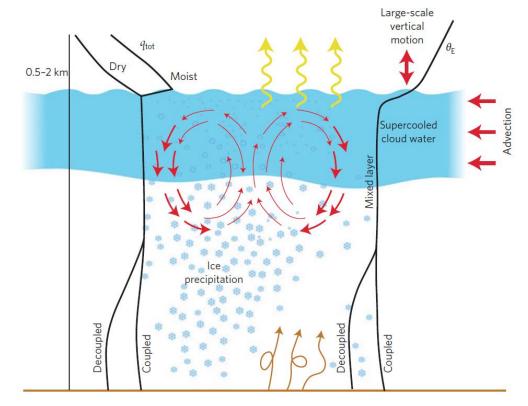


Effects of small-scale variability and turbulent fluctuations on phase partitioning in mixed-phase adiabatic cloud parcels

Daniel Gomes Albuquerque, Gustavo C. Abade, Hanna Pawłowska

Mixed-Phase clouds: A 3 phase system

- Contain both supercooled droplets and ice crystals
- Occur at all latitutes from the poles to the tropics
- Are stable systems that last for days or even weeks



A complex web of interactions

 A variety of processes impact the amount of super-cooled water in a mixed-phase cloud. This work focuses on the role of turbulent mixing in preserving the liquid phase.

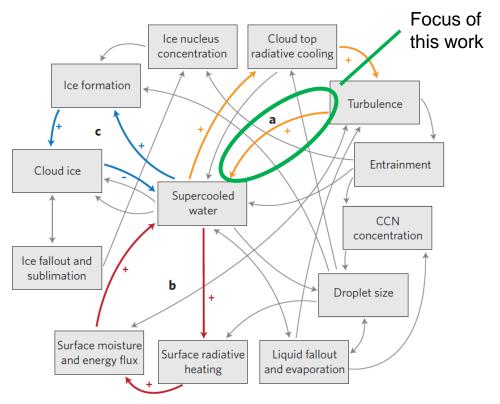
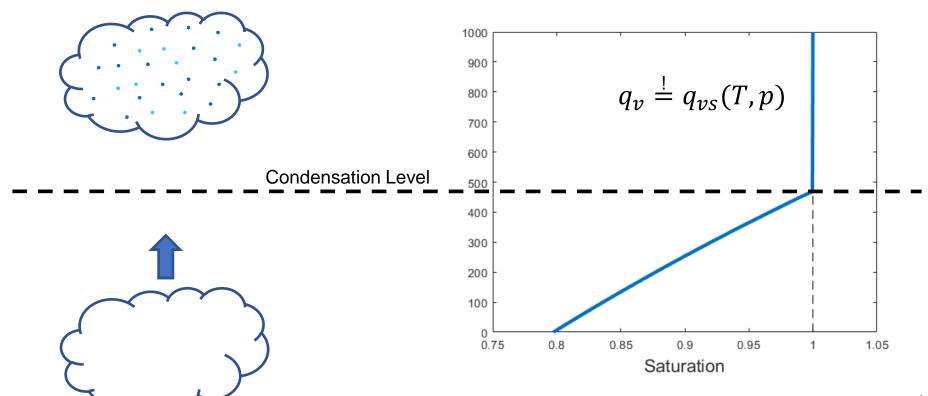


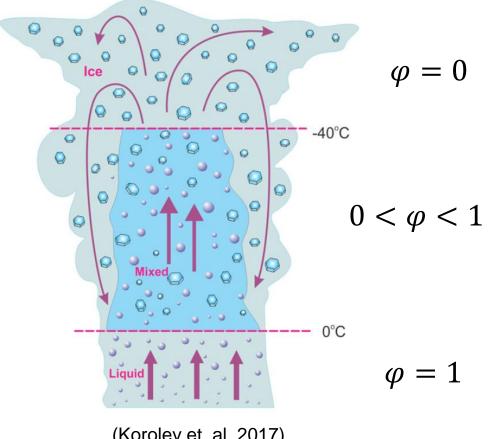
Figure from Morrison et al. 2011

Saturation Adjustment in a warm (ice-free) parcel: Infinitely fast condensation brings cloudy air to saturation condition.



Liquid water fraction: A parameter to characterize the cloud condensate

$$\varphi = \frac{m_l}{m_c} = \frac{q_l}{q_c} = \frac{q_l}{q_l + q_i}$$



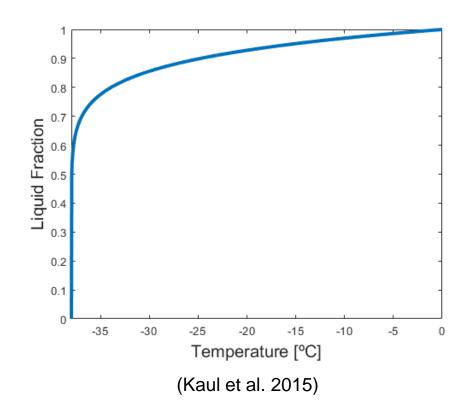
(Korolev et. al. 2017)

Saturation condition in a mixed-phase parcel and Temperature parametrization of liquid water fraction

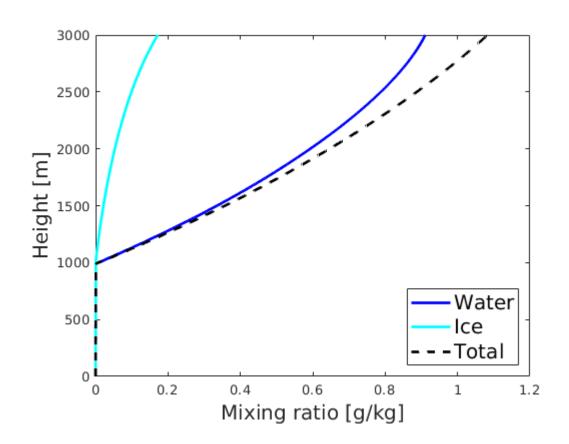
Saturation Condition:

$$q_v \stackrel{!}{=} \overline{q}_{vs} \equiv \varphi q_{vs,l} + (1 - \varphi) q_{vs,i}$$

$$\varphi(T) = \left(\frac{T - T_c}{T_w - T_c}\right)^n$$

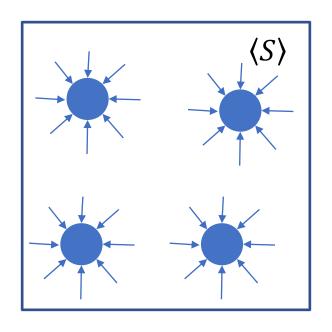


Mixed-phase Saturation Adjustment: Rising Adiabatic Parcel



Issue:
No condensation dynamics
(i.e. time evolution)

Improving the condensation model: Introducing droplet growth dynamics



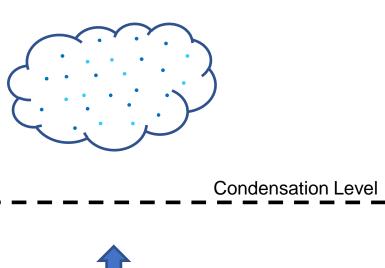
$$\frac{dr_k}{dt} = \frac{1}{r_k} D \left[\langle S \rangle - \frac{A}{r_k} + \frac{B}{r_k^3} \right]$$

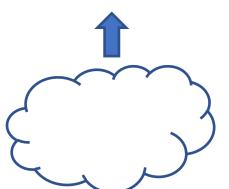
 $\langle S \rangle$: Mean Supersaturation

 $\frac{A}{r_k}$: Surface tension effect

 $\frac{B}{r_k^3}$: Solute effect

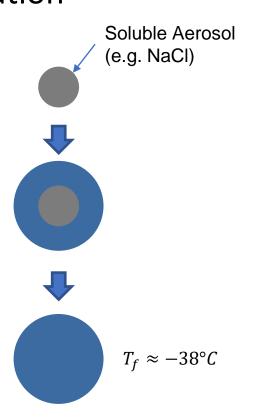
Super-droplet Model: Condensation is driven by supersaturation.

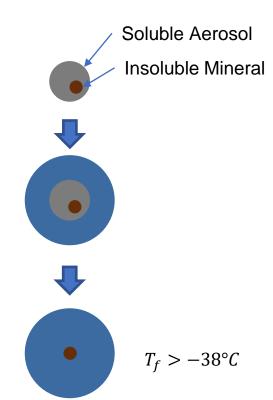




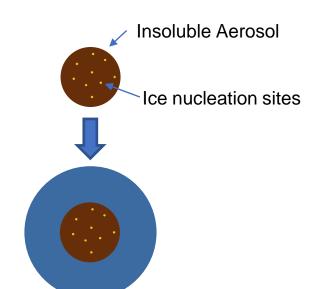
Saturation profile in a warm parcel 1100 1080 1060 1040 1020 980 960 940 920 900 0.98 0.985 0.99 0.995 1.005 1.01 1.015 1.02 Saturation

Immersion Freezing: Homogeneous and Heterogeneous Nucleation



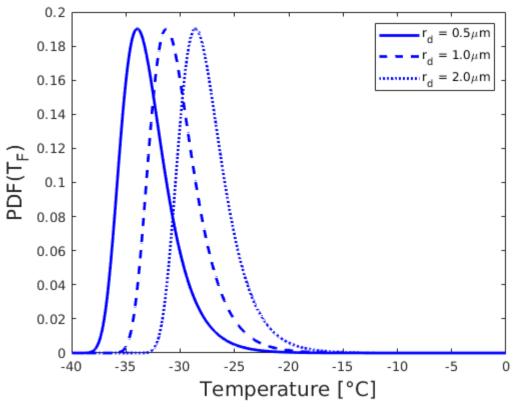


Heterogeneous Freezing Temperature Distribution

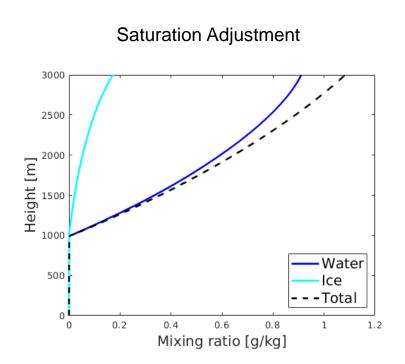


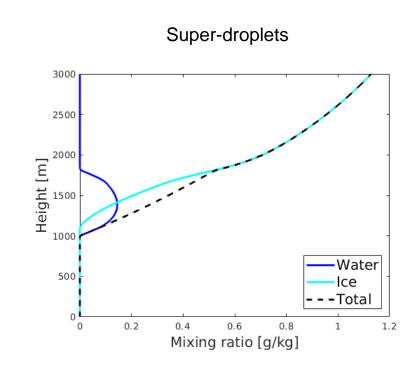
Freezing Occurs when:

- 1) $r > r_d$
- 2) S > 1
- 3) $T_k < T_f$ (Shima et. al. 2020)

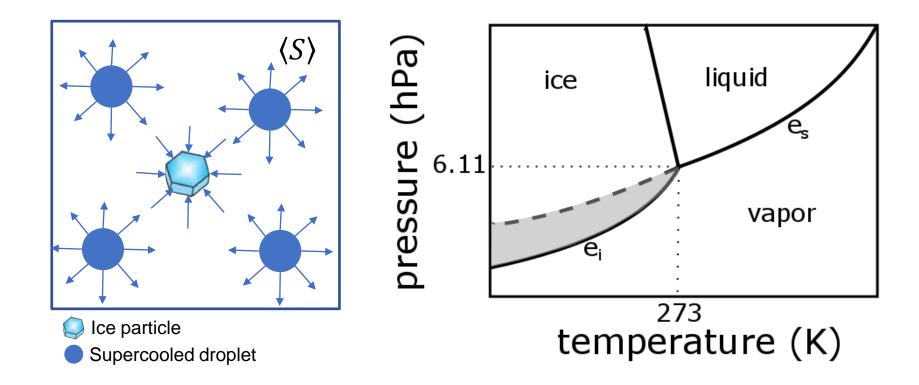


Comparison between bulk and particle-based models demonstrates ice-water instability

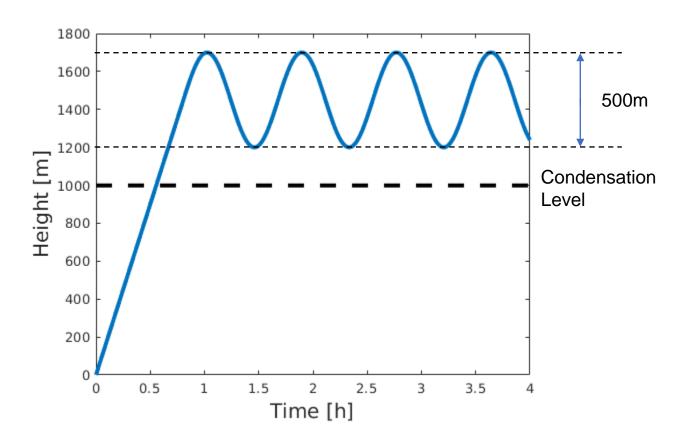




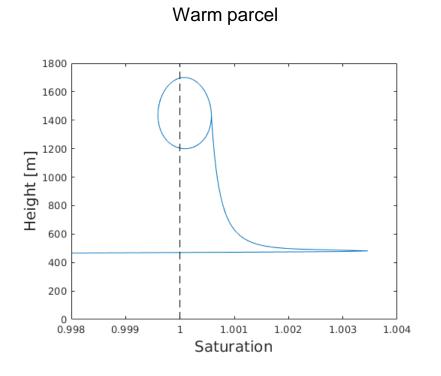
The Wegener-Bergeron-Findeisen Mechanism: A condenstation instability in mixed-phase clouds



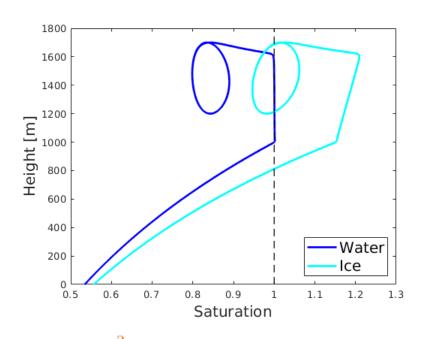
Oscillating Adiabatic Parcel: A framework to assess microphysical models



Liquid and Ice saturations in oscillating homogeneous air parcels



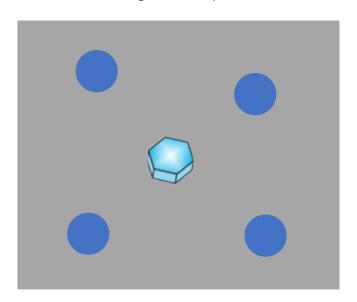
Mixed-phase parcel



Issue: All droplets are subject to the same average saturation ⟨S⟩.

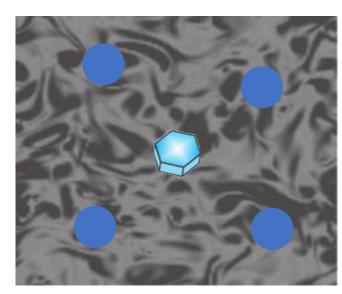
Introducing Small Scale Variability

Homogeneous parcel



 $\tau_{mix} = 0$

Stochastic parcel



$$\tau_{mix} \sim \left(\frac{L^2}{\varepsilon}\right)^{1/3}$$

Additional Superdroplet Attributes

Homogeneous Parcel

$$\boldsymbol{a} = \{r, r_d, r_d^{insol}, T_f\}$$

r : Droplet radius

 r_d : Dry radius (amount of solute)

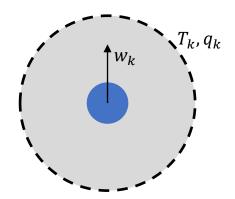
 r_d^{insol} : Insoluble dry radius T_f : Freezing temperature

Stochastic Parcel

$$\boldsymbol{a} = \{r, r_d, r_d^{insol}, T_f, T_k, q_k, w_k\}$$

 T_k : Local temperature

 q_k : Local vapor mixing ratio w_k : Local vertical velocity



Model Equations

Homogeneous Parcel

$$\frac{d\langle q \rangle}{dt} = -\langle C \rangle - \langle D \rangle$$

$$\frac{d\langle T \rangle}{dt} = \frac{L_v}{c_w} \langle C \rangle + \frac{L_s}{c_w} \langle D \rangle + \frac{L_f}{c_w} \langle F \rangle - \frac{c_p}{q} \langle w \rangle$$

- Water phase transitions
- Adiabatic Cooling

Stochastic Parcel

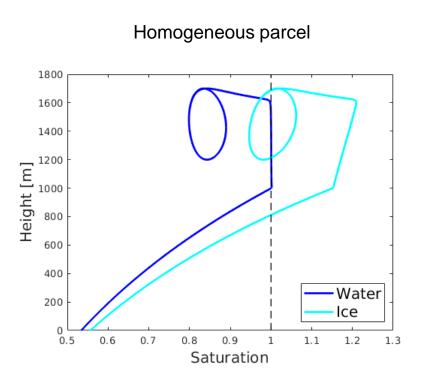
$$\frac{dq_k}{dt} = -\frac{q_k - \langle q \rangle}{\tau} - c_k - d_k$$

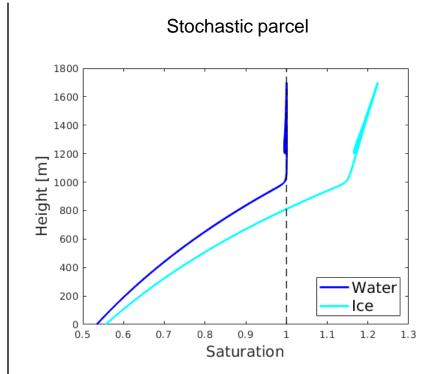
$$\frac{dT_k}{dt} = -\frac{T_k - \langle T \rangle}{\tau} + \frac{L_v}{c_p} c_k + \frac{L_s}{c_p} d_k + \frac{L_f}{c_p} f_k - \frac{c_p}{g} w_k$$

$$\frac{dw_k}{dt} = -\frac{w_k - \langle w \rangle}{\tau} + \sqrt{\frac{2\sigma^2}{\tau}} dW_k$$

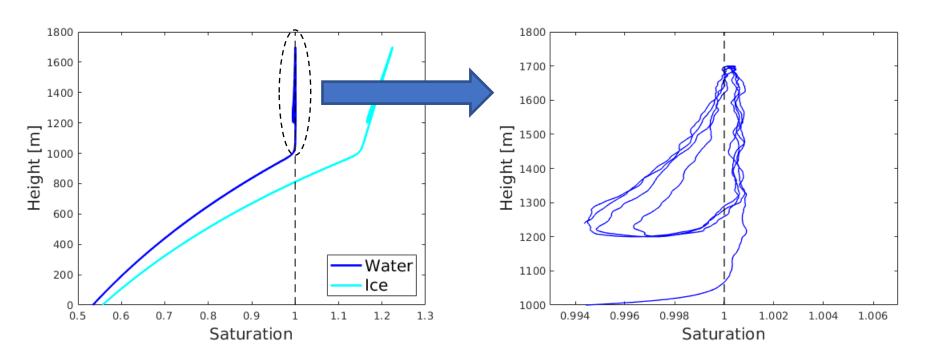
- Water phase transitions
- Adiabatic Cooling
- Relaxation due to turbulent mixing
- Stochastic velocity fluctuations

Liquid and Ice saturations in a mixed-phase parcel

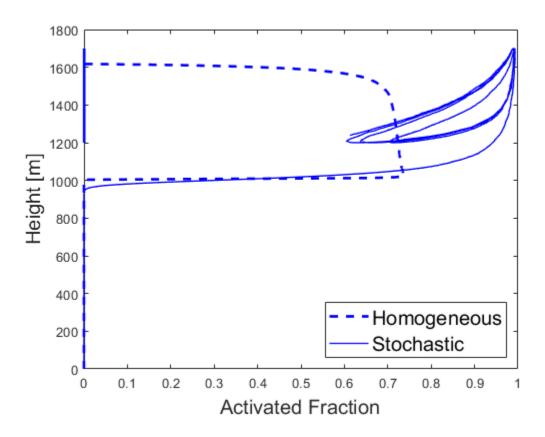




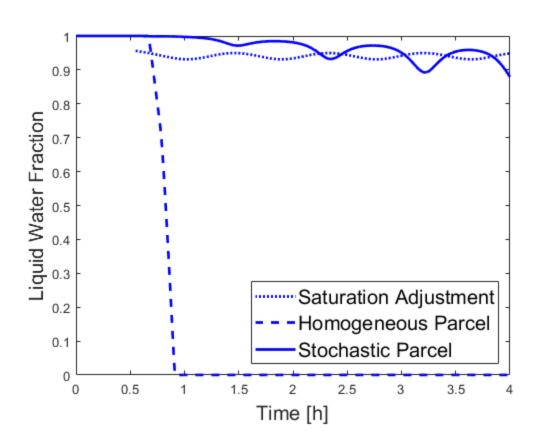
Liquid and Ice saturations for a stochastic mixed-phase parcel



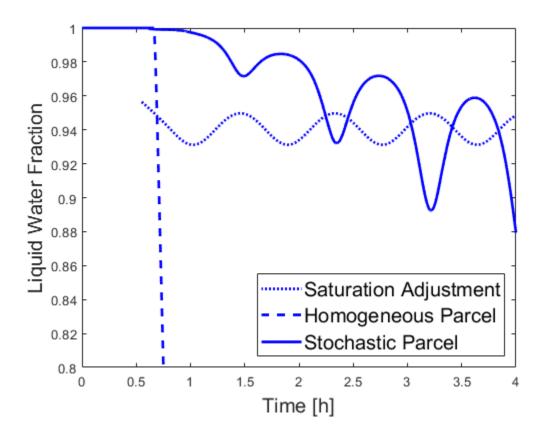
The fraction of ativated droplets is sensitive to the turbulent mixing time scale.



Time Evolution of liquid water fraction for 3 different models



Saturation Adjustment and Stochastic Parcel results for φ are in opposition of phase.



Final Remarks

- Small scale variability in temperature and water vapor density fields have a great impact on the evolution of phase partitioning.
- Small-scale (sub-grid) variability models attempt to reproduce the effect of small-scale turbulence in particle growth with a lower computational cost.