

EGU General Assembly 202 HS8.2.1 : The role of groundwater flow systems in solving water management and environmental problems

¹Univ Rennes, CNRS, Geosciences Rennes - UMR 6118, F-35000 Rennes, France ²Eau du Bassin Rennais, Collectivité, 35000 Rennes, France

GEOSCIENCES

UNIVERSITÉ D

EAU DU BASSIN

RENNAIS

--- Ronan Abhervé¹, Clément Roques¹, Laurent Longuevergne¹, Stéphane Louaisil², Jean-Raynald de Dreuzy¹, Luc Aquilina¹

Spatial variability and changes in storage-discharge relationships of crystalline catchments: implications for resilience and water resources management (Rennes, France)

Questions

What would be the future of the reservoir for water supply?

- What are the key climatic factors that control spatio-temporal water resources availability?
- How do geology and topography impact the storage capacity and hydrological flux dynamic on the landscape?
- How will catchment resilience evolve with global change?

FONDATION

RENNES 1

(5) Conclusion and perspectives

- Climate change is already strongly affecting the **effective precipitation** (recharge) of the Rennes area (Brittany, France)
 - Modeling forced by climatic forecasts show significant
- modification in term of storage-discharge dynamic
 - shift in time for recharge and extreme conditions
 lower baseflow and with longer period
- Hydroclimatic trends coupled with increasing water demand weakens current water management strategies
- + How can we design sustainable system accounting this new redistribution of water resources availability **in space and time**?

