

# WHATS THE STORY??





# Human pressures



Sea-level rise

### **PAST**

- Salt marshes in the Ria Formosa showed lateral expansion in the past
- Erosion associated with artificial inlet stabilization and dredging along the main navigable channels

 Marsh progradation near the natural inlets of the system, fed by sediment influx pulses

### **VOLUMETRIC CHANGES**



### **BOUNDARY CHANGES**



# Land Cover Changes - <u>Sea-Level Affecting Marshes Model</u> (<u>SLAMM</u>, v. 6.7)

LiDAr data

Site-specific parameters (e.g. great diurnal tide, salt elevation, etc)

Long-term boundary displacements

### Sea-level Rise:

Low sea-level rise scenario High sea-level rise scenario

### **HINDCAST**

(1947-2011)



### **FORECAST**

(2011-2100)





## **FUTURE**

Under a Low SLR rate scenario, the system appears capable of accreting in pace with future sea-levels

Under a High SLR rate scenario, sediment gains are not in pace with the imposed sea-levels

Progressive shrinking of the salt marsh, as it migrates landwards, with unvegetated features gaining ground and an overall increase of lower elevation vegetation

# **FUTURE**



# WHY DO WE CARE?



Past human interventions have caused major alterations in the sedimentary processes and geomorphic configurations of marshes

- In the future sea-level rise will potentially lead to major changes in salt marsh stability and/or survival in the next ~100 years
- Under future high sea-level rise conditions land cover trajectories show regime shifts in the salt marsh ecogeomorphological states and tipping points of state non-reversal