Springtime nitrogen oxides and tropospheric ozone in Svalbard: local and long-range transported air pollution

Alena Dekhtyareva¹, Mark Hermanson², Anna Nikulina³, Ove Hermansen⁴, Tove Svendby⁵, Kim Holmén⁶, and Rune Graversen⁷

¹Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway, (alena.dekhtyareva@uib.no)
² Hermanson and Associates LLC, Minneapolis, USA
³ Arctic and Antarctic Research Institute, Russia
⁴ NILU - Norwegian Institute for Air Research, Norway
⁵ NILU - Norwegian Institute for Air Research, Norway
⁶ Norwegian Polar Institute, Longyearbyen, Norway
⁷ UiT The Arctic University of Norway, Tromsø, Norway

30.04.2021, EGU

Motivation

- Svalbard's archipelago is nearly a pristine Arctic environment with a few regional and local sources of pollution
- It is an area where climate change is the most pronounced
- Svalbard offers unique opportunities for monitoring of background air composition, meteorological and climatological studies (AMAP, EMEP, GAW programmes etc.)

Source: https://www.google.no/maps/

But there are also local air pollution sources in Svalbard that have not been studied thoroughly before

(a) map of Svalbard

Coal-fired power plants are regional yearround point sources of NO_x and SO₂ with seasonally variable emission rate

90% of all NO_x and particulate matter (PM) emissions come from marine transportation

the ship traffic intensifies in summer

Power plant on low-sulphur diesel is largest local source of NO_x in Ny-Ålesund

Chemistry of NO_x and O₃

Atmospheric nitrogen cycle (Fig. 3.2 in AMAP, 2006)

Chemistry of NO_x and O₃

Tropospheric O_3 chemistry where HO_x and RO_2 are peroxy radicals, R is alkyl radical, H_2O_2 and ROOH are hydrogen and organic hydroperoxides, respectively (Fan and Jacob, 1992; Jacob, 2000; Monks, 2005)).

Atmospheric lifetime and transport of pollutants to the Arctic

Arctic front extends southerly during winter \rightarrow long-range transport of pollutants intensifies

Lifetime of tropospheric $NO_x \sim 1$ day \rightarrow local or regional origin

Lifetime of tropospheric $O_3 \rightarrow days$ to weeks \rightarrow local or long-range transported

! But much longer lifetime during winter and spring in the Arctic

-due to low temperature and humidity \rightarrow wet deposition is limited

-No sunlight during polar night→ photochemical are reactions limited

-In spring, NO_x can be produced from PAN thermal decomposition

Figure 4.1. Mean position of the arctic air mass in winter (January) and summer (July), superimposed on the percentage frequency of major south-tonorth transport routes into the Arctic in summer and winter (AMAP, 1998).

Measurements in Ny-Ålesund

NILU station: -NO_x Monitor, T200 <u>WMO met:</u> meteorological data from Ny-Ålesund <u>AWI station:</u> -Balloonborne sonde, Vaisala RS41 -Ozone sonde

-Automatic weather station (HMP-155 Vaisala and WMT-700 Vaisala) -Picarro G2401 temp 2017-NRT CO gas analyser -Photometric O₃ T400

Zeppelin

station

Westby

Harbour

WMO met

vatne

plant

NILU

AWI

Measurements in Longyearbyen

Measurements in Barentsburg

AARI lab and AARI mount: NO_x analyser, AC32M Environnement S.A. UV Photometric O₃ analyser, O342 Environnement S.A. Portable Vaisala weather stations, WXT20 Vaisala

IAO SB RAS: Aethalometer, MDA-02 IAO SB RAS Automatic Sun Tracking Photometer SP-9 IAO SB RAS

Data series from the 3 stations: Barentsburg (BBG), Ny-Ålesund (NyA, Zep), Longyearbyen /Adventdalen station (Adv)

High correlation between O3 at the Zeppelin station in Ny-Ålesund and in Barentsburg--> long-range transport is important Some local titration of O_3 with NO_x in Barentsburg is observed, but is not significant NO_x concentrations are weakly correlated at the three stations-->different factors affect the concentration at each site (wind speed and direction, atmospheric stability and sunlight intensity)

no: no regime; AR: Atlantic ridge; ScTr: Scandinavian trough; ScBL: Scandinavian blocking; GL: Greenland blocking

Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., & Wernli, H. (2017). Balancing Europe's wind-power output through spatial deployment informed by weather regimes. *Nat. Clim. Chang.*, 7(8), 557–562. https://doi.org/10.1038/NCLIMATE3338

Average parameters at the three stations for the defined 9 subperiods

FLEXPART (Fremme & Sodemann, 2019; Läderach & Sodemann, 2016; Stohl et al., 2005) trajectory probability for 10 days backward trajectories calculated for days 2-10 (red contours with step of 0.001), GOME2 BrO vertical column density (AC SAF, 2017) (color scale)

References:

- AC SAF (2017): GOME-2 BrO Total Column Density Data Record Release 1 Metop, EUMETSAT SAF on Atmospheric Composition Monitoring, DOI: 10.15770/EUM_SAF_O3M_0011. http://dx.doi.org/10.15770/EUM_SAF_O3M_0011
- AMAP. (1998). AMAP Assessment Report: Arctic Pollution Issues. Oslo, Norway.
- AMAP. (2006). AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and Acidification in the Arctic. Oslo, Norway.
- Breider, T. J., Mickley, L. J., Jacob, D. J., Wang, Q., Fisher, J. A., Chang, R. Y., & Alexander, B. (2014). Journal of Geophysical Research : Atmospheres and aerosol absorption. *J. Geophys. Res. Atmos.*, 119, 4107– 4124. https://doi.org/10.1002/2013JD020996.Received
- Fan, S.-M., & Jacob, D. J. (1992). Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols. *Nature*, 359, 522–524.
- Fremme, A., & Sodemann, H. (2019). The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley. *Hydrol. Earth Syst. Sci.*, *23*(6), 2525–2540. https://doi.org/10.5194/hess-23-2525-2019
- Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., & Wernli, H. (2017). Balancing Europe's wind-power output through spatial deployment informed by weather regimes. *Nat. Clim. Chang.*, 7(8), 557–562. https://doi.org/10.1038/NCLIMATE3338
- Jacob, D. J. (2000). Heterogeneous chemistry and tropospheric ozone. *Atmos. Environ.*, *34*(12–14), 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8
- Läderach, A., & Sodemann, H. (2016). A revised picture of the atmospheric moisture residence time. *Geophys. Res. Lett.*, *43*(2), 924–933. https://doi.org/10.1002/2015GL067449
- Monks, P. S. (2005). Gas-phase radical chemistry in the troposphere. *Chem. Soc. Rev.*, *34*, 376–395. https://doi.org/10.1039/b307982c

Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. *Atmos. Chem. Phys.*, 5(9), 2461–2474. https://doi.org/10.5194/acp-5-2461-2005