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Background

• Tropical cyclone boundary layer (TCBL) plays an essential role in TC development

(1)   Dissipate TC kinetic energy & enhance convergence of water vapor (CISK; Charney & Eliassen, 1964)

(2)   Positive feedback in BL: sea surface wind ⇆ water vapor flux (WISHE; Rotunno & Emanuel, 1987; Emanuel 1989, 1995)

• Widely used BL parameterizations are not fit to TCBL

(1) Different BL parameterization results in vast gap between TC simulations (Braun & Tao 2000; Nolan et al., 2009; Smith & Thomsen, 

2010)

(2) Some unique structures (roll vortexes) in TCBL contribute a lot to turbulent fluxes which are missed in the current BL 

parameterizations (Morrison et al., 2005; Zhang et al., 2008)



Related works

• Cumulus convective parameterization

(1) Fully connected neural network (FC-NN) learns from coarse-grained high resolution simulation (Krasnopolsky et al., 2013; 

Brenowitz & Bretherton, 2018, 2019)

(2) FC-NN learns from superparameterization in GCM (Gentine et al., 2018; Rasp et al., 2018)

(3) Random forest learns from cumulus convective parameterization and coarse-grained high resolution simulation (O’Gorman & 

Dwyer, 2018; Yuval & O’Gorman, 2020)

• Parameterization in large eddy simulation (LES) and Reynolds-averaged Navier-Stokes equations (RANS)

(1) FC-NN learns from coarse-grained high resolution simulation (Cheng et al., 2019; Ling et al., 2016; Pawar et al., 2020)

(2) Random forest learns to revise the traditional parameterization (Wang et al., 2017)

(3) FC-NN learns from computationally costly prarameterization (Pal 2020)

Basically two paradigm:
(1) Learn from reliable high resolution output
(2) Learn from parameterization and replace them

Our choice



Large eddy simulation of TCBL

Figure. 1 The vertical cross sections of velocity field in TCBL during TC mature stage. 
Crossing direction is normal to the long axis of roll vortexes (dx = 100 m, dy = 50 m)

LES Model setup

• WRF v3.9.1.1, idealized simulation with 4 nested domains

• The inner most domain: dx = dy = 100 m, 200 km side length square

• 69 vertical levels in total with 15 levels below 1200m

• Whole time span: 119 h, LES grid loaded at 108 h (11 h for LES) 

Wave length features

(a) 500 m (due to the cluttering effect of convections)

(b) 1-3 km

(c) 1-3 km, intensity much more stronger than in (a) and (b), agree with 

eye wall observation (Zhang et al., 2011): 0.5 km-3 km



Figure. 2 Vertical wind speed at 27 m in TCBL during TC mature stage

Figure. 3 Welch spectrum analysis of vertical velocity series of roll vortexes along 12 
directions in TCBL beyond eyewall (0.05 -> 4 km, 0.2 -> 1 km)

Vertical velocity distribution

(a) Streak-like roll structures featured by velocity pair of upward 

and downward motions

(b) Stronger than in moat and rainband

(c) More cluttered and disorganized

In agreement with simulation and eyewall observation (Ito et al., 

2017; Zhang et al., 2011)

Spectrum analysis

• Roll vortex wave length beyond eyewall is between 1-5 km which is 

in perfect agreement with observation (Zhao et al., 2020)

• To sum up, our simulation is consistent with observations and 

simulations, which is convincing enough to develop parameterization



Preprocessing

Figure. 4 Flowchart of the derivation of large scale variables and turbulent fluxes

Figure. 5 Turbulent flux of different types at the height of 100 m and 560 m

(a) The variables selected: 𝑢, 𝑣, 𝑤, 𝜃, 𝑞, 𝑞𝑐 (𝑞: water vapor mixing ratio; 

𝑞𝑐: cloud water mixing ratio)

(b) LES domain is divided into many small squared areas (2 km×2 km)

(c) Average in each squared area: 𝑈, 𝑉,𝑊,𝛩, 𝑄, 𝑄𝑐

(d) Calculate covariance in each squared area: 𝑢′𝑤′,𝑣′𝑤′, 𝜃′𝑤′ and 𝑞′𝑤′

Flux distribution features

• Low level: eyewall structure, vague rainbands, symmetric and 

relatively smooth distributions

• High level: evident eyewall and rainband structures, convective

and asymmetric signals



NN structures and nonlinear transformation
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• NN structure: one-dimension convolutional neural network (1D-CNN)

• All the data are in the same air column in TCBL (the bottom 14 levels)

• Input: 14×6; output: 14×4

• Hidden layer: all have same number of feature maps with zero-padding 

to conserve NN width 

• Kernel size = 3
Figure. 6 Schematic diagram of 1D-CNN structure 

• Unbalanced distribution will poison the ML model performance (Hensman & Masko, 

2015; Pulgar et al., 2017)

• This novel nonlinear transformation can alleviate the unbalanced issue in turbulent 

fluxes

• Model will be trained on 𝑥𝑛𝑒𝑤 [all the turbulent fluxes transformed by (1)]

• Model prediction will be inverse-transformed by (2) to recover the original value



Results

36 40 44 48 52 56 60

4 0.645 0.643 0.636 0.635 0.630 0.628 0.627

6 0.552 0.544 0.538 0.537 0.533 0.533 0.527

8 0.521 0.514 0.509 0.507 0.506 0.503 0.503

10 0.509 0.507 0.504 0.502 0.497 0.496 0.496

12 0.512 0.512 0.507 0.508 0.501 0.500 0.498

14 0.517 0.513 0.512 0.511 0.509 0.509 0.507

𝑢′𝑤′ 𝑣′𝑤′ 𝜃′𝑤′ 𝑞′𝑤′

1D-CNN 0.634 0.608 0.395 0.528

FC-NN-NODE 0.661(4.1%) 0.635(4.2%) 0.413(4.1%) 0.552(4.4%)

FC-NN-COMP 0.665(4.7%) 0.625(2.7%) 0.432(8.4%) 0.544(2.9%)

FC-NN-PARA 0.664(4.5%) 0.629(3.4%) 0.428(7.6%) 0.557(5.2%)

Table 1. 1D-CNN MSEs on validation set with different super parameter configuration

Table 2. The testing set MSE comparison between the best 1D-CNN in Table 1 and other 
different FC-NNs. Percentages in parentheses are the improvements achieved by 1D-CNN
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Mean squared errors (MSEs) on validation set

• The validation set MSE distribution exists optimal point (10 

layers - 56 feature maps) not like in training set (not shown)

• The NN depth has much more influence on 1D-CNN 

performance than number of feature maps

Comparison with other FC-NN on testing set
FC-NN-NODE: same number of nodes as in 1D-CNN
FC-NN-COMP: same amount of computational cost as 1D-CNN
FC-NN-PARA: same number of free parameters as in 1D-CNN

• On testing set, the 1D-CNN achieves consistent improvement

compared to traditional FC-NN

• Compared to FC-NN-NODE: less parameters leads to easier 

training

• Compared to FC-NN-COMP and FC-NN-PARA: 1D-CNN 

achieves much more nodes and expressivity

First 2 h LES data is deprecated; 3-9 h: training; 10 h: validation; 11 h: testing



Figure 7. The score distribution of turbulent fluxes on training and validation set 
before and after the nonlinear transformation (1). n is the power number in (1). 
The area under the curve is the number of training and validation data.
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• Each air column in the dataset is allocated by a score
• The diagnosed turbulent fluxes are normalized by stds and avgs

calculated level by level for different type of fluxes
• The bigger the score, the extremer the turbulent fluxes
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• The original data distribution is very close to Pareto distribution 

(a widely used long-tail distribution), indicating imbalanced 

nature of turbulent fluxes

• As n decreases, the distribution is more compact; the extreme 

value goes down; the score range shrinks

n 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

skw 4.55 4.08 3.64 3.23 2.85 2.50 2.17 1.90

Distribution skewness for different n



Figure 8. The relative RMSE distribution of 1D-CNN trained on nonlinearly transformed data. 
The assessment is made on validation set except for n=6 (test), which is on testing set

• The data on validation or testing set are all divided into ten groups (0.1~1.0). 
The turbulent flux extremeness increases from 0.1 to 1.0

• The relative root-mean-squared error (RMSE) is the ratio between RMSE of 
1D-CNN trained on nonlinearly transformed data and on original data. Each 
group gets a relative RMSE

• As n decreases from 1.0 to 0.6, the relative RMSE of 1D-CNN 

decreases for all the groups, except for the last group

• As n decreases from 0.6 to 0.3, the relative RMSE increases again, 

and the last group result explodes

• The proper n will let 1D-CNN enjoy a considerable RMSE decrease, 

which also applies to the testing set

• 5-15% for momentum flux, 2-6% for sensible and water vapor flux
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Figure 9 & 10. The spatial distribution of turbulent fluxes predicted by YSU and 1D-CNN at fine-grid time 10 h 40 min at 251 m (left) and 780 m (right), which is 
in the testing set. The 1D-CNN is trained on the nonlinearly transformed data (n=0.6)

• 1D-CNN can reproduce the spatial distribution of turbulent flux including eyewall and rainband structures, while the YSU cannot

• The higher level performance decreases, probably due to poor predictability



Figure 11 & 12. The prediction scatterplot of the 1D-CNN on the whole testing set at the height of 251 m (left) and 780 m (right). The 1D-CNN is trained on 
the nonlinearly transformed data (n=0.6)

Same as in Figure 10 and 11, the prediction performance at the higher level is worse. High level suffers from underestimation, to be exact. 
Low level prediction is almost perfect



Figure 13 & 14. The original and predicted turbulent flux distribution of the testing set at 251 m (left) and 780 m (right). The 1D-CNN is trained on the 
nonlinearly transformed data (n=0.6)

1D-CNN achieves almost perfect distribution prediction at low level. A mild underestimation of extreme value is observed at high level. 
The water vapor flux seems hardest to be predicted.



Figure 15. The Pearson correlation coefficient drop when one of the 1D-CNN 
input variable is deleted

• Most influential input:

- Momentum flux:      𝑢 and 𝑤 for 𝑢′𝑤′, 𝑣 and 𝑤 for 𝑣′𝑤′

- Sensible heat flux:    𝜃

- Water vapor flux:     𝑞 and 𝑞𝑐

• Unusual high sensibility of 𝑢, 𝑣, 𝜃 and 𝑞 in low level and 𝑤 and 𝑞𝑐

in high level: low level flux in surface layer obeys Monin-Obukhov

similarity rule, high level flux is more convective

• Pearson coefficient drop between level 8 and 12 is not that high: 

probably due to stabilizing effects in BL top



Conclusion and future work

• 1D-CNN achieves consistent improvements compared to FC-NN, 1D-CNN has convolution structure which is very 

convenient for large scale deployment on the GPU in the future

• The novel nonlinear transformation can alleviate the unbalanced nature of turbulent fluxes. This alleviation efficiently 

decrease the RMSE of 1D-CNN

• The trained 1D-CNN successfully reproduces the spatial and probabilistic distribution of turbulent flux while the high 

level performance suffers from underestimation issue in extreme values

• The related large-scale variables have the most influential effect on corresponding turbulent fluxes. Low level flux is 

more related to surface variables while the high level flux is more related to convections

Future work

The performance of 1D-CNN on different resolution

The performance of 1D-CNN during online simulation


