Institut de Ciències del Mar

XCSIC

A LAGRANGIAN VIEW OF THE TRANSFER OF SOUTHERN WATERS TO THE SOUTH ATLANTIC OCEAN

Anna Olivé Abelló, Josep L. Pelegri and Ignasi Vallès-Casanova

Department of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, SPAIN. aolive@icm.csic.es, pelegri@icm.csic.es, valles@icm.csic.es

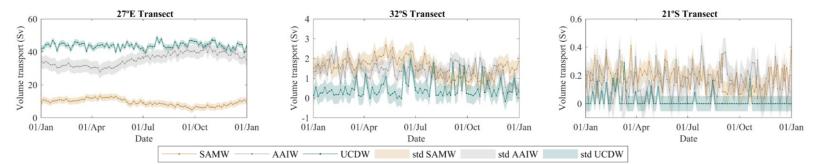
DRAKE

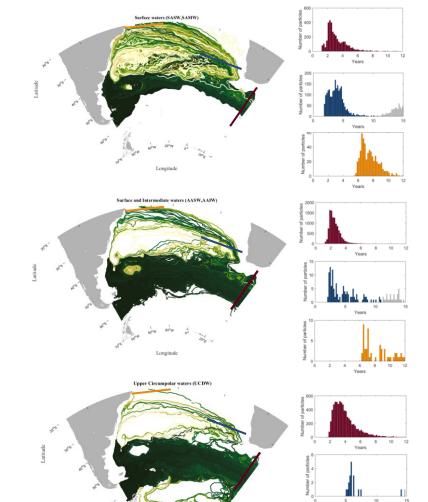
PASSAGE

OBJECTIVE

Explore the **pathways, transit times** and **seasonality** of the **Antarctic waters** that are **incorporated to the South Atlantic**, with special attention to their **recirculation** in the subtropical gyre and escape northward through the North Brazil Current as part of the returning limb of the Atlantic Meridional Overturning Circulation.

METHODS


We use the daily values of climatological GLORYS12v1 velocity fields (u,v,w) for 2002-2018 and obtain trajectories with **OceanParcels** software. We include small diffusive (K_h =50 m²/s) motions.


PRELIMINARY RESULTS

Subantarctic Surface and Mode Waters (SASW/SAMW): 75% of the transport follows the Antarctic Circumpolar Current (ACC) into 27°E while the remaining 25% is incorporated to the subtropical gyre through 32°S. Among the latter, 48% veer northward into the 21°S section. Antarctic Surface and Intermediate Waters (AASW/AAIW): 98% of the transport follows the ACC and 2% join the subtropical gyre. Upper Circumpolar Deep Water (UCDW): 99% of the transport follows the ACC and only 1% drift cross the 32°S section, and only 50% of the latter reach through the 21°S section.

The median times for the Drake Passage water particles to get to the **27°E**, **32°S** and **21°S** sections are: 2.3, 3.6 and 6.5 year for the **SASW/SAMW**; 1.9, 2.5 and 6.5 year for the **AASW/AAIW**; and 3.3, 5.9 and 9.5 year for the **UCDW**, respectively.

At **27°E**, there is an increase of **AASW/AAIW** and decrease of **SASW/SAMW** in autumn. At **32°S** and **21°S**, the **SASW/SAMW** transport experiences a decrease by the end of the year while the **AASW/AAIW** transport contribution remains stable. In all transects, the contribution of **UCDW** remains stable along the year.

