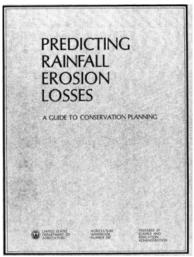


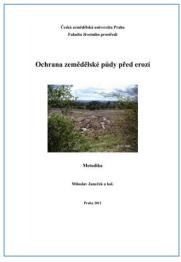
Experimental assessment of soil protection by vegetation for current crops and for up-coming EU glyphosate ban

Jakub Stašek, Josef Krása, Adéla Roudnická, Tomáš Dostál, Martin Mistr, Jan Devátý Faculty of Civil Engineering, CTU in Prague

Workplace and equipment

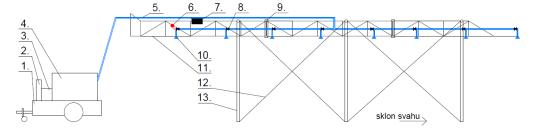
- Department of Soil Water Conservation
 - Faculty of Civil Engineering, Czech Technical University in Prague
- Rainfall simulator
 - field 8x2m
 - laboratory 2x1m





Cover management factor- C factor in Czech Republic

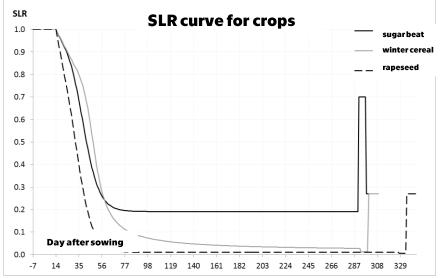
- Predicting Rainfall Erosion Losses by Wischmeier & Smith (1978)
 - Transformed into czech conditions by Janeček (2002)
 - Modified and updated in Janeček (2012)

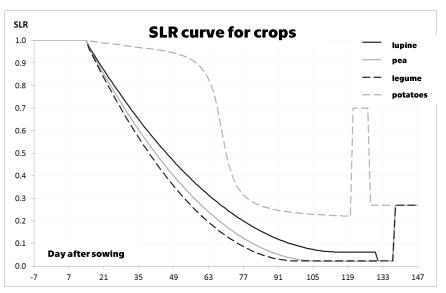


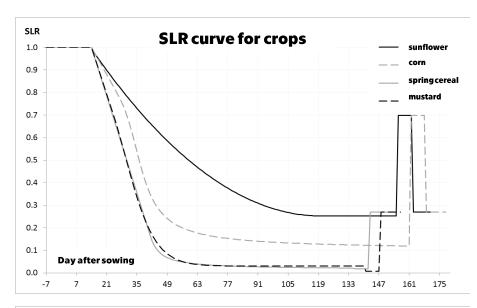
Field rainfall simulator

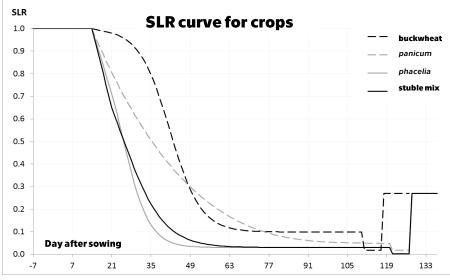
- The aim is to estimate crop cover factor for RUSLE
- Experiments on bare soil and crops
- Dry and wet soil conditions
- Artificial rainfall → surface runoff and sediment transport → collecting samples
 - 60 mm/h for 30 minutes after surface runoff starts
 - Samples taken every 2,5 minute

Dataset of experiments


- Since 2016 experiments on several plots, 3x per year, in total 341
 - In 2016 65 experiments
 - In 2017 71 experiments
 - In 2018 77 experiments
 - In 2019 44 experiments
 - In 2020 84 experiments
- On most common crops and various management practices
 - Cereals (wheat, barley, rye)
 - Corn, sunflower, sorghum
 - Rapeseed, pea, mustard, alfalfa, buckwheat
 - And bare soil as reference
- Dry and wet soil conditions




Preliminary results – SLR curves


- SLR Soil Loss Ratio is an estimate of the ratio of soil loss under actual conditions to losses experienced under the reference conditions (bare soil)
 - C factor value is an average Soil Loss Ratio weighted according to the distribution of R during the year
- Start with sowing date and has several fixed intervals
 - 14 days for first crop development stage
 - curve itself based on measured data
 - 7 days after harvesting based on measured data
 - 7 days soil preparation phase before tillage measured data

- SLR curves show increasing soil protection as the plant develop
- Differences in crops
 - In the speed of soil protection development
 - In the final SLR
- Curves are better for later processing
 - Easy to change for local agricultural condition and combine with local R factor
- With the upcoming glyphosate ban it is important to search for alternative methods of farming
 - and know which ones are good for environment

Run-off database

- Publicly available database of runoff experiments
 - aims for large dataset
- Valuable resource for calibration and validation of mathematical models

RunoffDB (cvut.cz)

Thank you

jakub.stasek@fsv.cvut.cz

The contribution was prepared in the frame of projects No. QK1920224 (Possibilities of anti-erosion protection on farms to avoid the use of glyphosate), and H2020 SHUi (Soil Hydrology research platform underpinning innovation to manage water scarcity in European and Chinese cropping systems).