

SORBONNE UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

C. Mathé¹ A. Määttänen¹ J. Audouard^{1,2} C. Listowski^{1,3} E. Millour⁴ F. Forget⁴ A. Spiga⁴ D. Bardet⁴ L. Teinturier¹ L. Falletti¹ M. Vals⁵ F. Gonzalez-Galindo⁶ F. Montmessin⁵

Global 3D modelling of Martian CO_2 clouds

(1) LATMOS/IPSL, Sorbonne Université, UVSQ Paris-Saclay, CNRS, Paris, France
 (2) Currently at : WPO, Paris, France
 (3) DAM-Ile de France (DIF), Bruyères-le-Châtel, France
 (4) LMD/IPSL, Sorbonne Université, CNRS, Paris, France
 (5) LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
 (6) Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain

Summary

1. Introduction

- 1. The Martian atmosphere
- 2. CO_2 clouds on Mars
- 3. Questions
- 2. Methodology
 - 1. Description of the microphysical cloud model
 - 2. Description of the Martian Global Climate Model
 - 3. Description of performed simulations

3. Results

- 1. Global results of CO_2 clouds
- 2. Focus on polar CO_2 clouds
- 3. Focus on mesospheric CO_2 clouds
- 4. Conclusions
- 5. Perspectives

Introduction

The Martian atmosphere

- ♦ Composition:
 - ♦ CO₂ (95%)
 - ♦ N2 (2.8%)
 - ♦ Ar (2%)
 - \diamond O, CO, H₂O, and trace gases
- $< < T_{surf} > = 215 \text{ K}$
- $< P_{surf} > = 610 \text{ Pa}$
- Tropopause at ~ 1 Pa (45 km)
- * Mesopause at ~ 0.01 0.001 Pa (100 - 120 km)
- ♦ Thermopause around 200 km

CO₂ clouds observed on Mars

Carbon dioxide clouds have been revealed by numerous instruments around Mars from the beginning of the XXI century. Two kinds of clouds involving different formation processes:

♦ Polar clouds

♦ Located in the polar troposphere during winter

- ♦ Equatorial and mid-latitudes clouds
 - Before northern autumn equinox: located in the equatorial region and southern mid-latitudes
 - After northern autumn equinox: in northern mid-latitudes

Credit: Hu et al., 2012

Fig. 6. (a) Latitude-solar longitude map of datasets on mesospheric clouds, as noted in the legend. (b) Latitude-longitude map of datasets on mesospheric clouds, as noted in the legend. The Pathfinder rover observation of bluish clouds is also marked.

Credit: Määttänen et al., 2013

Purpose & Questions

Formation processes of theses clouds are still not fully understood

However, modeling studies have revealed processes necessary for their formation:

- ♦ Atmospheric waves to perturb the atmosphere leading to a temperature below the condensation of CO₂ [Kuroda et al., 2013; Gonzalez-Galindo et al., 2011; Spiga et al., 2012]
- ♦ Sources of condensation nuclei to trigger the cloud formation [Listowski et al., 2014]

Using our full microphysical model of CO₂ clouds formation coupled to a Global Climate Model (GCM), we intend to investigate:

- ♦ Seasonal and spatial distribution of CO₂ clouds
- ♦ Major actors of both tropospheric and mesospheric in formation of CO₂ clouds
- \diamond The impact of CO₂ clouds on the Martian atmosphere

Methodology

Description of the microphysical cloud model

A state-of-the-art microphysical column (1D) model for CO₂ clouds in a Martian atmosphere was developed at LATMOS [Listowski et al., 2013, 2014].

The model contains:

- ♦ Source of condensation nuclei
 - ♦ Dust
 - \oplus H₂O ice (possible)
 - ♦ Exogenous source in the mesosphere (from meteor ablation) [not use here]
- \diamond Nucleation, contact parameter of CO₂ ice on:
 - ♦ Dust = 0.78 [Nachbar et al. 2016]
 - \oplus H₂O ice = 0.95 [Glandorf et al., 2002]
- Condensation/sublimation (modified for a near-pure vapor [Listowski et al., 2013])
- Sedimentation

Description of the Martian Global Climate Model

The Martian Global Climate Model has been developed by the LMD in collaboration with many laboratories including LATMOS [Forget et al., 1999].

It is a sigma-hybrid coordinate in a latitudelongitude grid.

The MGCM includes:

- ♦ Dust scenarii coming from observations [Montabone et al., 2015]
- ♦ Dust cycle
- ♦ Water cycle [Navarro et al., 2014]
- $Oldsymbol{\&}$ CO₂ cycle

Representation of the spatial grid in a GCM. Credit: L. Fairhead, LMD

Description of the 4 performed simulations

- Simulation of 1 Martian year
- Horizontal grid resolution: 64 x 48
 (5.6258°longitude x 3.758° latitude)
- Vertical grid resolution: 32 levels (top at ~ 120 km, ~ 3×10^{-3} Pa)
- Dust scenario: climatology (regular scenario)

- Dynamical time step: 1.5 minutes
- Physical time step: 15 minutes
- Microphysical time step: 18 seconds

2 hours

- Outputs time step:

CO₂ clouds Simulation Water ice as CN Name CO₂ clouds Microphysics radiatively active number 1 Reference Yes 2 CO2useH2O Yes Yes 3 RT Yes Yes _ 4 RT+CO2useH2O Yes Yes Yes

Results Global results of CO_2 clouds

Seasonal and spatial distribution of CO₂ clouds

- Use H_2O ice as CN help to form CO_2 clouds in the equatorial region
 - Theses clouds are located in the mesosphere (see after)
 - Good match with the mesospheric clouds observed
- RT simulation don't show significant variations (back-up)

Cross: mesospheric clouds observed

Frequency of CO_2 cloud formation over a Martian year

Reference

CO2useH2O

RT+CO2useH2O

- CO₂ clouds reach 45° around each pole during winter
- As for equatorial region, they are located between $\pm 40^{\circ}$ N

Opacity of CO_2 clouds at 1 micron

Reference

CO2useH2O

RT+CO2useH2O

Activate radiatively CO₂ clouds increase the opacity at 1 micron in the case with RT+CO2useH2O

Opacity of CO₂ clouds at 1 micron RT+CO2useH2O

Few equatorial clouds at 16 h and their opacity is far below OMEGA observations ($\tau_{1\mu m} < 0.01 - 0.6$ at 16h for equatorial mesospheric clouds [Määttänen et al., 2010])

Results

Focus on polar CO_2 clouds

Slice of H_2O (color) and CO_2 (black) ice mmr profiles at 78°N

Reference

Co2useh2o

RT+Co2useh2o

- CO_2 ice clouds are lower than H_2O ice clouds
- H_2O ice allows to form more CO_2 ice clouds at all atmospheric levels
- Activate radiatively CO₂ clouds shows no significant variations

Slice of H_2O (color) and CO_2 (black) ice mmr profiles at 78°S

Reference

Co2useh2o

RT+Co2useh2o

- CO_2 ice this time are upper than H_2O ice, closed to the tropopause at 1 Pa
- Activate radiatively CO₂ clouds forms less CO₂ clouds above 3 Pa around Ls=50°

Polar CO₂ particle radius variation at 79°N during winter, at different local times

• Weak variations in local time of CO_2 ice radius particles with the case using H_2O ice particles as CN

• CO_2 ice particles reach size of ~100 µm radius closed to the surface and drop down to few microns around 10 Pa

Polar CO₂ particle radius variation at 79°S during winter, at different local times

- No variations in local time of CO₂ ice radius particles
- CO_2 ice particles reach size of ~100 µm radius closed to the surface and drop down to few microns around 1 Pa

Thickness of the supersaturated layer at poles: comparison to MCS [Hu et al., 2012]

Quite good agreement with MCS observations in the south pole.

At the north, the saturated layer thickness is still high. Our CO_2 ice clouds reach high altitudes

Activate radiatively CO_2 clouds allow thicker supersaturated layer in the north polar region at the beginning of autumn

Average of saturation profiles: at all local times, all longitudes and latitudes $> 60^{\circ}$

Comparison to MOLA observations: top altitude of CO_2 clouds (CO2useH2O)

- Top altitude of CO2 clouds simulated higher (~ 64 km) than MOLA observations for all simulations.
- Compute from Eq. 22 in Tobie et al., [2003]: $z_{top} = when \left(\rho_{atm}N_{CO2} > 2.10^{-8} R_{CO2}^{-2}\right)$

Emissivity comparison to 32µm MCS observations to the integrated emissivity simulated (CO2useH2O)

Figure 13. Polar map of average wintertime emissivity for MY 29–33 in the southern (left panel) and northern (right panel) hemispheres spanning L_s from 0–180° and 180–360°, respectively. The outer latitudinal circle is 60° and the inner circle is 80°. The map resolution is 18 km/pixel.

Surface emissivity mean in time during polar winter

- Direct value comparison is dangerous
- Low emissivity patterns are encouraging
- We will develop a tool to get the 32 μm emissivity for a better comparison with MCS observations

Credit: Garry-Bicas et al. [2020]

Emissivity comparison to 32µm MCS observation to the integrated emissivity simulated (CO2useH2O)

Figure 11. Polar maps of emissivity in the northern hemisphere for locations with solid CO_2 on the surface. Each plot is a time-bin of 15° of L_s and spans from 180–360° L_s . The concentric rings are an artifact due to instrumental calibrations for MCS. The data spans up to 60° in latitude (larger latitude circle), smaller circle is the 80° latitude. Gray gaps imply lack of data, not to be confused with any emissivity value. Maps include data extending to 60°N latitude, from MY 29–33, with a resolution of 18 km/pixel.

NORTH: Values do not be compared, but tendencies emissivity are closed between observation and simulation

Credit: Garry-Bicas et al. [2020]

Emissivity comparison to 32µm MCS observation to the integrated emissivity simulated (CO2useH2O)

SOUTH: Values do not be compared, but tendencies emissivity are closed between observation and simulation

Credit: Garry-Bicas et al. [2020]

Results

Focus on mesospheric CO₂ clouds

Slice of H₂O (color) and CO₂ (black) ice mmr profiles at 0°N (RT+CO2useH2O)

- CO₂ clouds are located above the H₂O clouds for all seasons
- During two periods, models do not form CO₂ clouds:
 - Ls = \sim [20, 80]°
 - $Ls = \sim [220, 330]^{\circ}$

Lack of mesospheric CO₂ clouds (RT+CO2useH2O) CO₂ ice mmr (Ls)

- CO_2 clouds are formed mainly around -50°E, and around +/- 100°E around Ls=100° •
- During the 2 Ls periods described before, the atmosphere is hotter on averaged compared to the rest of year •

Thermal tides (RT+CO2useH2O)

- \sim CO₂ clouds appear around -50°E at the beginning of the night and go westerly vanishing during afternoon
- CO_2 clouds appear close to the sunset (6-8 h) at all longitudes

Day-night clouds at 0°N, at 0.5 Pa along seasons (RT+CO2useH2O)

Mesospheric CO_2 clouds are formed at the beginning of the night and vanished during the day

Mesospheric CO_2 particle radius variations at 0°N

Reference

CO2useH2O

RT+CO2useH2O

CO2 particle radius start growing at 18h and reach a maximum at 12h the next day

Radius information depending on local time

Reference

Altitude (Pa)

CO₂ ice particles radius have few microns size

Conclusions

- ♦ Mesospheric clouds
 - \diamond Planetary wave plays a key role in the mesospheric CO₂ cloud formation [Gonzàlez-Galindo et al., 2011]
 - ♦ Water ice clouds are a good source of condensation nuclei for CO₂ ice clouds in the mesosphere but are not sufficient for formation of daytime
 - ♦ 16h clouds close to missing while that have been observed by many instruments [Määttänen et al., 2013]
 - ♦ Optical thickness of these clouds are still weak $\tau_{1\mu m} < 10^{-4}$ at best compared to 0.01 0.6 observed by OMEGA [Määttänen et al., 2010]
 - ♦ Radius particles are few microns size, thicker than ~100 nm observed by SPICAM [Montmessin et al., 2013]
- ✤ Polar clouds
 - \diamond Good latitudinal coverage of CO₂ clouds compared to observations
 - \diamond CO₂ clouds are much higher in altitude compared to observations
 - \diamond Radius particles are ~100 µm size

Perspectives

- ♦ Add meteoritic flux as condensation nuclei to investigate 16h clouds missing and/or low opacities simulated[Listowski et al., 2014, Plane et al., 2018]
- Use different dust scenario (scenarios for corresponding years to study interannual variations)
- ♦ Increase the horizontal and vertical grid resolution to solve small-scale waves

Frequency of CO_2 cloud formation over a Martian year

Reference

RT

Opacity of CO_2 clouds at 1 micron

Reference

Slice of H₂O (color) and CO₂ (black) ice mmr profiles at 78°N

RT

Reference

Slice of H_2O (color) and CO_2 (black) ice mmr profiles at 78°S

Reference

Polar CO₂ particle radius variation at 79°N during winter, at different local times

RT

Reference

Polar CO₂ particle radius variation at 79°S during winter, at different local times

Reference

Atmospheric layer thickness of CO_2 saturation: comparison to MCS [Hu et al., 2012]

Reference

Location of H2O (color) and CO2 (black) ice at $0^{\circ}N$

Temperature (CO2useH2O)

Temperature at 0°N and -45°E (CO2useH2O)

Day-night clouds at 0°N at 0.5 Pa (CO2useH2O)

Mesospheric CO_2 particle radius variations at 0°N

Reference

Radius information depending on local time

Reference

RT

