Representation of human fire in DGVMs needs to account for categorical differences between land systems

Completed: Database of Anthropogenic Fire Impacts (DAFI) to support ABM parameterisation **Current:** Developing first global human fire ABM incl. spatial mapping of agent types **Future:** Integrate ABM with JULES-INFERNO (loose or tight coupling?)

 Advancing representation of anthropogenic fire in dynamic global vegetation models
 James Millington, Oliver Perkins, Matt Kasoar, Apostolos Voulgarakis

 EGU General Assembly 2021 | EGU21-9502 | doi.org/10.5194/egusphere-egu21-9502
 Leverhulme Centre for Wildfire, Environment and Society

Advancing Representation of Anthropogenic Fire in Dynamic Global Vegetation Models

James Millington, Oliver Perkins, Matt Kasoar, Apostolos Voulgarakis

LEVERHULME

Centre for Wildfires, Environment and Society Imperial College London

EGU General Assembly 2021 | EGU21-9502 | doi.org/10.5194/egusphere-egu21-9502

Human Activity in Models of Global Fire

DGVMs currently have large uncertainties in simulating historical burned area

Human Activity in Models of Global Fire

Teckentrup *et al.* (2019) [Biogeosciences]

Dfferences in modelled BA due to functions relating fire to population density

Our argument: poor representation is because models don't account for categorical differences in land management related to fire

Agent-based modelling approaches enable us to capture these differences

A Rational Conception of Human Fire

Fire 'Stages' Building on Pyne 2019 [FIRE], Seijo and Gray 2012 [RHE]

First Fire	Pre-human
Second Fire	Pre-industrial
	Turnettiene

2.5th FireTransitionThird FireIndustrialPyrocenePost-industrial

Stages are attitudes towards fire and land that imply differing use and management

A Rational Conception of Human Fire

Land Systems Combine land use intensity and land management practices See Václavík *et al.* 2013 [GEC], Dou *et al.* 2021 [Lsp Ecol]

Land-Fire Systems A type of Land System from combination of Land Use and Fire Stage

		Land Use					
		Non-Extractive	Livestock	Crops	Forestry		
FIFE Stage	Pre-Industrial	Unoccupied	Pastoralism	Swidden	Hunt & Gather		
	Transition	Unmanaged	Ranching (Extensive, S M)	Small- holding (S M)	Logging (M) (Primary Forest)		
	Industrial	Pyro-exclusion (State Manager)	Ranching (Intensive, M)	Farming (Intensive, M)	Managed (M) (Plantation or Second Forest)		
	Post-Industrial	Pyro-diverse (Fuel Load Management)	Grazing (Subsidised, Fuel Mgmnt)	Abandoned	Abandoned		

Non-Extractive = e.g. parks S = subsistence M = market

What is the empirical basis?

- Empirical studies of human fire have been conducted in many different academic fields
- However, no global synthesis of human-fire interactions has yet been attempted that covers the breadth of human fire use and suppression

We constructed a freely available Database of Anthropogenic Fire Impacts (DAFI) from a meta-analysis of 1,800 worldwide case studies from over 105 countries between 1990-2020

DAFI was developed in an iterative manner based on the Land-Fire Systems matrix (previous slide)

Download Poster

DAFI: Database of Anthropogenic Fire Impacts

Data on fire use, suppression and policies

Perkins and Millington (2021) [FigShare, GitHub]

DAFI Analysis

Seven fire use types describe 90% of the records

Perkins and Millington (2021) [FigShare, GitHub]

DAFI Analysis: Fire Size

Crop fires much smaller than other landscape fires

[AAG '21

DAFI Analysis: Suppression

Differences in suppression by fire stage

[AAG '21

1. Fractional land use 2. Land-Fire Systems in cells of global grid distributed globally

3. Some LFS have multiple Agent Functional Types

4. AFTs have fire uses & suppression actions

1. Fractional Land Use (per cell)

- Cell fractional coverage of land uses from prescribed inputs
- Arable, livestock and urban fraction derived from CMIP6 landcover inputs (Hurtt et al. 2020 [GMD])
- Competition between non-extractive land uses (except urban) and forestry for the remaining space
 - Based on decision trees, similar to those for Land-Fire Systems (see Step 2, next slide)
- In the coupled simulation model, land uses will be derived from JULES-INFERNO outputs

2. Global Distribution of Land-Fire Systems

- Based on decision trees (DT)
 - Structures derived empirically from DAFI with ancillary data
- One DT per Land-Fire System
 - DT probabilities are interpreted as 'competitiveness scores' (CS)
 - CS are compared to determine the global distribution
- Bootstrapping used to find a single resilient tree structure
 - We do not grow an *ensemble* of trees (as others usually do)
 - Our approach establishes numeric distributions for thresholds and probabilities

2. Global Distribution of Land-Fire Systems

1) Model performance (AUC)

Model	Non- extractive	Livestock	Crops	Forestry	Overall (weighted)
Multinomial	0.752	0.723	0.798	0.928	0.785
Decision trees	0.787	0.785	0.802	0.913	0.814

2) Variable frequency – NB population density is a second order effect

Variable	1 st node	2 nd / 3 rd node
HDI & GDP	12	5
Market access & influence	3	1
Population Density	-	3
ET0 / NPP	1	8
Topography (DEM / TRI)	_	4

16

2. Example: Decision Trees for Crops LFS

2. Example: Decision Trees for Crops LFS

Swidden

Proportion

Small-Holder

- 0.8 - 0.6 - 0.4 - 0.2

Intensive

Proportion

3. Split some LFS to AFT (Example: Crops)

- For Crops Land-Fire Systems there is a one-to-one correspondence with AFTs for all fire stages *except* Transition
 - The Crops-Transition LFS is split using the tree as below:

Proportions

4. Fire Use (Example: Crop Residue Burning)

Burned Area (% of cell)

- 35 - 30 - 25 - 20 - 15 - 10 - 5 - 0

%

Next Steps and Challenges

- Coupling ABM with JULES-INFERNO (e.g. below)
- Verification e.g. MODIS detection of small agricultural fires

Ford *et al.* (In Review)