Towards model-data comparison of the deglacial temperature evolution in space and time

<u>Nils Weitzel</u>, Heather Andres, Jean-Philippe Baudouin, Oliver Bothe, Andrew Dolman, Lukas Jonkers, Marie Kapsch, Thomas Kleinen, Maximilian May, Uwe Mikolajewicz, Andre Paul, Kira Rehfeld April 27, 2021

Institute of Environmental Physics, Heidelberg University, Germany

Towards model-data comparison of the deglacial temperature evolution in space and time

N. Weitzel (nweitzel@iup.uni-heidelberg.de), H. Andres, J.-P. Baudouin, O. Bothe, A. Dolman, L. Jonkers, M. Kapsch, T. Kleinen, M. May, U. Mikolajewicz, A. Paul, K. Rehfeld

Monte Carlo approach: Compare probability distributions

Data:

- SST reconstructions from Palmod marine synthesis [1]
- 6 MPI-ESM deglaciation simulations [2, 3]

Pseudo-proxy experiments:

Method identifies order of simulations robustly on zonal and global level

Submission in preparation for Climate of the Past

1) Jonkers et al. (2020), ESSD, DOI: 10.5194/essd-12-1053-2020 2) Kleinen et al. (2019), CP, DOI: 10.5194/cp-16-575-2020 3) Mikolajewicz, Kapsch (pers. comm.)

Comparison with SST reconstructions:

- Differences in Northern Hemisphere detected
- Representation of non-climatic processes important

Introduction

Need to develop methods which 'quantitatively compare the transient characteristics of both the paleoclimate data and the simulations' [1]

Requirements

- Applicable to forced and spontaneous oscillations in simulations
- Use existing data syntheses
- Account for quantifiable uncertainties
- Q1: Can temperature reconstructions discriminate between simulations?
- Q2: What can we learn from comparing simulations and reconstructions?
- Step 1) Pseudo-proxy experiments
 Step 2) Apply to SST compilation

[1] Weitzel et al. (2019), Figure: Andres et al. (2019), Data: Shakun et al. (2012), Marcott et al. (2013), Smith and Gregory (2012), Rehfeld et al. (2018)

General strategy and challenges

♦ PSM ♦

Simulations

- Complete 4d representation
- Depends on model configuration, boundary conditions, internal variability

Proxy system models

- Bridge gap between simulations and reconstructions
- P = f(C, t)
- *f* has stochastic and deterministic components

Temperature reconstructions

- Limited temporal resolution
- Chronological uncertainties
- Uncertain proxy-climate relationship
- Sparse spatial distribution

Model-data comparison strategy

- First, compare each record with simulation at respective location
- Apply **proxy system model** to make reconstructions and simulations more comparable
- Use Monte Carlo approach to incorporate uncertainties
- We decompose the time series to score different aspects of the simulations
 - Timescale decomposition: Separate non-linear trend from LGM to Holocene (orbital-scale variations) from modulating events such as Bolling-Allerod and Younger Dryas (millennial-scale variations)
 - Feature decompositon: Separate magnitude of variations at given timescale (measure by standard deviation) from shape of temporal evolution (given by normalized time series)
- Quantify the difference between the resulting probability distributions
- Finally, aggregate scores spatially to increase robustness of scores

Model-data comparison workflow

Data: Jonkers et al. (2020), Uwe Mikolajewicz / Marie Kapsch (pers. comm.), Method: Weitzel et al., in prep.

Comparison metric: Integrated square distance ('Energy score')

Energy score in 1D: $\mathsf{ES}(\mathbb{P},\mathbb{Q}) = \int_{-\infty}^{\infty} (F(x) - G(x))^2 \, dx.$

F, G are cumulative distribution functions of probability distributions \mathbb{P}, \mathbb{Q} .

For multivariate distributions (i.e. time series):

 $\mathsf{ES}(\mathbb{P},\mathbb{Q}) \geq 0;$ $\mathsf{ES}(\mathbb{P},\mathbb{P}) = 0;$ Smaller score = Smaller deviation

Gneiting and Raftery (2007), Thorarinsdottir, Gneiting, and Gissibl (2013)

Simulations

pmu0212: Config 1, GLAC-1D, local MWF pmu0211: Config 1, ICE-6G, local MWF pmu0210: Config 2, ICE-6G, global MWF pmu0209: Config 2, ICE-6G, no MWF pmu0208: Config 2, ICE-6G, local MWF pmu0208: Config 3,

GLAC-1D, local MWF

6 deglacial MPI-ESM simulations with T31GR30 resolution, different model configurations, ice sheet topographies, and meltwater forcing (MWF)

Temperature reconstructions

with sub-millennial resolution

Jonkers et al. (2020) and Kleinen, Mikolajewicz, and Brovkin (2020), Uwe Mikolajewicz / Marie Kapsch (pers. comm.)

Idea: Test algorithm in controlled environment

- 1. Choose pmu2012 as reference simulation
- 2. Simulate pseudo-proxies using the proxy system model
- 3. Perform model-data comparison between pseudo-proxies and simulations

Main questions:

- What is influence of non-climatic noise processes in proxy system model? We test for signal-to-noise ratios of reconstructions from very high (SNR=10) to very low (SNR=0.5). The underlying truth is given by the 'No_noise' experiment
- On which spatial aggregation scales are results robust?
 We aggregate scores from individual records globally and zonally

Results: successful discrimination on a global level

- Robust simulation order for SNR≥2
- Very similar model configurations mostly indistinguishable

Can we distinguish MPI-ESM simulations zonally? Yes, if SNR ≥ 2

Largest

 ensemble spread
 of scores in
 Northern
 Hemisphere
 mid-to-high
 latitudes

 Robust simulation order for SNR≥2

nweitzel@iup.uni-heidelberg.de

- Compare 6 MPI-ESM simulations with SST reconstructions
- To account for the unknown non-climatic noise structure, we employ three different temporal autocorrelation structures (white noise, AR1, powerlaw) and four different signal-to-noise ratios, SNR={2,4,6,8}, for the non-climatic noise process
- Scores are averaged over zonal bands
- Shaded areas on the next slide show the range of scores for the different noise configurations, while thick lines are averages over all noise configurations

Results

 Largest performance differences between simulations in Northern Hemisphere

- Strong influence of SNR on magnitude scores
- MWF-related fluctuations do not fit with reconstructions

Outlook: Where does more data help to benchmark MPI-ESM simulations?

• Greenland, Antarctica, North America

Conclusions and outlook

Next steps:

- more detailed spatial analysis
- use process-based PSMs
- include more reconstructions

For questions and discussion:

- use the live chat on Tuesday, April 27
- contact me through the EGU networking functions
- e-mail: nweitzel@iup.uni-heidelberg.de

References i

- Andres et al. "An integrated proxy and simulation data initiative for the Holocene and the last deglaciation". In: <u>PAGES Magazine</u> 26 (2019), p. 85. DOI: 10.22498/pages.26.2.85.
- Gneiting and Raftery. "Strictly Proper Scoring Rules, Prediction, and Estimation". In: <u>JASA</u> 102 (2007), pp. 359–378. DOI: 10.1198/016214506000001437.

Jonkers et al. "Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis". In: <u>ESSD</u> 12 (2020), pp. 1053–1081. DOI: 10.5194/essd-12-1053-2020.

References ii

- Kleinen, Mikolajewicz, and Brovkin. "Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period". In: <u>CP</u> 16 (2020), pp. 575–595. DOI: 10.5194/cp-16-575-2020.
 - Marcott et al. "A Reconstruction of Regional and Global Temperature for the Past 11,300 Years". In: <u>Science</u> 339 (2013), pp. 1198–1201. DOI: 10.1126/science.1228026.
 - Rehfeld et al. "Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene". In: <u>Nature</u> 554 (2018), pp. 356–359. DOI: 10.1038/nature25454.
 - R. S. Smith and Jonathan Gregory. "The last glacial cycle: Transient simulations with an AOGCM". In: <u>Climate Dynamics</u> 38 (2012), pp. 1545–1559. DOI: 10.1007/s00382-011-1283-y.

References iii

- Shakun et al. "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation". In: <u>Nature</u> 484 (2012), pp. 49–55. DOI: 10.1038/nature10915.
 - Thorarinsdottir, Gneiting, and Gissibl. "Using Proper Divergence Functions to Evaluate Climate Models". In: SIAM/ASA Journal on Uncertainty Quantification 1 (2013), pp. 522–534. DOI: 10.1137/130907550.
 - Weitzel et al. "Diving into the Past: A Paleo Data-Model Comparison Workshop on the Late Glacial and Holocene". In: <u>BAMS</u> 100 (2019), pp. 1–4. DOI: 10.1175/BAMS-D-18-0169.1.