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Pseudo-proxy experiments:
Method identifies order of simulations robustly
on zonal and global level

Strategy:

     

Monte Carlo approach: 
Compare probability distributions

Comparison with SST reconstructions:
- Differences in Northern Hemisphere detected
- Representation of non-climatic processes important

Data:
- SST reconstructions from Palmod marine 
  synthesis [1]
- 6 MPI-ESM deglaciation simulations [2, 3]
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Introduction

Need to develop methods which

’quantitatively compare the transient

characteristics of both the paleoclimate

data and the simulations’ [1]

Requirements

• Applicable to forced and spontaneous

oscillations in simulations

• Use existing data syntheses

• Account for quantifiable uncertainties

Q1: Can temperature reconstructions

discriminate between simulations?

Q2: What can we learn from comparing

simulations and reconstructions?

Step 1) Pseudo-proxy experiments

Step 2) Apply to SST compilation
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[1] Weitzel et al. (2019), Figure: Andres et al. (2019), Data: Shakun et al. (2012), Marcott et al. (2013), Smith and Gregory (2012), Rehfeld et al. (2018)



General strategy and challenges

Simulations

• Complete 4d

representation

• Depends on model

configuration,

boundary conditions,

internal variability

Proxy system models

• Bridge gap between

simulations and

reconstructions

• P = f (C , t)

• f has stochastic

and deterministic

components

Temperature reconstructions

• Limited temporal resolution

• Chronological uncertainties

• Uncertain proxy-climate

relationship

• Sparse spatial distribution

nweitzel@iup.uni-heidelberg.de 4



Model-data comparison strategy

• First, compare each record with simulation at respective location

• Apply proxy system model to make reconstructions and simulations more

comparable

• Use Monte Carlo approach to incorporate uncertainties

• We decompose the time series to score different aspects of the simulations

– Timescale decomposition: Separate non-linear trend from LGM to Holocene

(orbital-scale variations) from modulating events such as Bolling-Allerod and

Younger Dryas (millennial-scale variations)

– Feature decompositon: Separate magnitude of variations at given timescale

(measure by standard deviation) from shape of temporal evolution (given by

normalized time series)

• Quantify the difference between the resulting probability distributions

• Finally, aggregate scores spatially to increase robustness of scores
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Model-data comparison workflow

Decomposition into magnitude and shape
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Quantify deviation and spatial aggregation
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Interpolate to record location, sample to

record resolution, add non-climatic noise
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Data: Jonkers et al. (2020), Uwe Mikolajewicz / Marie Kapsch (pers. comm.), Method: Weitzel et al., in prep.



Comparison metric: Integrated square distance (’Energy score’)

Energy score in 1D:

ES(P,Q) =

∫ ∞
−∞

(F (x)− G (x))2 dx .

F ,G are cumulative distribution functions

of probability distributions P,Q.
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ES(P,Q) ≥ 0; ES(P,P) = 0; Smaller score = Smaller deviation
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Gneiting and Raftery (2007), Thorarinsdottir, Gneiting, and Gissibl (2013)



Data

Simulations
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pmu0212: Config 1,

GLAC-1D, local MWF

pmu0211: Config 1,

ICE-6G, local MWF

pmu0210: Config 2,

ICE-6G, global MWF

pmu0209: Config 2,

ICE-6G, no MWF

pmu0208: Config 2,

ICE-6G, local MWF

pmt0531: Config 3,

GLAC-1D, local MWF

6 deglacial MPI-ESM simulations with

T31GR30 resolution, different model

configurations, ice sheet topographies,

and meltwater forcing (MWF)

Temperature reconstructions
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105 SST records from

Palmod marine synthesis (V1.1.0beta),

covering period 22-6ka

with sub-millennial resolution
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Jonkers et al. (2020) and Kleinen, Mikolajewicz, and Brovkin (2020), Uwe Mikolajewicz / Marie Kapsch (pers. comm.)



Pseudo-proxy experiments (PPEs)

Idea: Test algorithm in controlled environment

1. Choose pmu2012 as reference simulation

2. Simulate pseudo-proxies using the proxy system model

3. Perform model-data comparison between pseudo-proxies and simulations

Main questions:

• What is influence of non-climatic noise processes in proxy system model?

We test for signal-to-noise ratios of reconstructions from very high (SNR=10) to

very low (SNR=0.5). The underlying truth is given by the ’No noise’ experiment

• On which spatial aggregation scales are results robust?

We aggregate scores from individual records globally and zonally

nweitzel@iup.uni-heidelberg.de 9



Results: successful discrimination on a global level
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Can we distinguish MPI-ESM simulations zonally? Yes, if SNR ≥ 2
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SST reconstructions vs. MPI-ESM simulations

• Compare 6 MPI-ESM simulations with SST reconstructions

• To account for the unknown non-climatic noise structure, we employ three

different temporal autocorrelation structures (white noise, AR1, powerlaw) and

four different signal-to-noise ratios, SNR={2, 4, 6, 8}, for the non-climatic noise

process

• Scores are averaged over zonal bands

• Shaded areas on the next slide show the range of scores for the different noise

configurations, while thick lines are averages over all noise configurations
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Results
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Outlook: Where does more data help to benchmark MPI-ESM simulations?

Highest chance in regions with large ensemble spread
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Conclusions and outlook
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For questions and discussion:

• use the live chat on Tuesday, April 27

• contact me through the EGU networking functions

• e-mail: nweitzel@iup.uni-heidelberg.de

Next steps:

• more detailed spatial analysis

• use process-based PSMs

• include more reconstructions
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