

### Floodplains representation in Land Surface Models

Toward higher resolution



A. Schrapffer, J. Polcher, A. Sörensson, L. Fita









#### What are the floodplains and why representing them?

Junk et al. (1989) :

"areas that are temporally or permanently flooded by the lateral overflow of rivers or lakes and/or by direct precipitation or groundwater."





Large floodplains are considered as wetlands and their study is a pertinent subject due to :

- Their impact on the **regional water cycle** (local changes in *evapotranspiration and heat fluxes*)
- Their interaction with the atmosphere (changes in *precipitation patterns, discontinuity of surface temperature and heat fluxes)*, and even more for tropical floodplains
- Their ecological richness and biodiversity
- Their strong interaction with the carbon cycle

### Using a high resolution river routing scheme

#### High resolution rouing allows to :

- Use the river routing with different type of grid and resolution (previously only with rectilinear at 0.5°)
- Improves the representation of the **river flow**
- Improves the representation of **subgrid processes**
- Facilitates the comparison with observations



High resolution river routing

**Hydrological** 

Transfer Unit (HTU)

# **Floodplains description**

Floodplains are described in the HTUs with:

- the Maximal fraction of floodplains defined from Global Lake and Wetland Dataset (GLWD - Lehner and Döll, 2004).
- the **Difference of altitude** two consecutive HTUs (from the altitude at the outflow).
- the Shape of the floodplains is described with :
  - >  $\beta_0$ : shape of the floodplains assumed from the distribution of altitude of the HTUs' hydrological pixels,
  - $> h_0$ : height at which the HTU is flooded.

The river routing in ORCHIDEE uses three reservoirs: one for the river flow crossing the HTU (**the stream**), one for the runoff and one for the drainage.

The floodplains are represented as an **extra-reservoir** in serie with the stream reservoir.





## **Floodplains at high resolution**

The water in the floodplains reservoir the water can have extra movements:

- **Overflow** : the water moves upstream when the height of the floodplains is higher than the difference of altitude with the upstream HTUs
- Infiltration : of the water which then goes to the soil humidity of the grid point (shared by all the HTUs in the grid point)
- Evaporation : at almost potential rate over the flooded surfaces





# The Pantanal

Focus on the world's most extensive floodplains





#### Results

Offline simulation over the Pantanal, the world's largest floodplains, forced by WFDEI CRU (Weedon et al., 2014)





no floodplains

 with floodplains M

А

1

- > Improvement of the river discharge at the outflow when activating the floodplains scheme
- > The annual cycle of the flooded area seems correct but its variability is underestimated.
- > The evapotranspiration increases due to direct evaporation and to transpiration.

S

Ο

Ν

# **Conclusion and perspectives**

The reprentation of the floodplains at high resolution in a Land Surface Model :

- Improved the representation of the water cycle
- Increases the evapotranspiration and changed the vegetation.
- Underestimates the flooded area, partly due to the Taquari Megafan (*because it's a divergent flow*)



The following step is to evaluate the impact of the floodplains in a landatmosphere coupled simulation over South America. Taquari Megafan (Assine et al. 2016)



# Thank you for your attention

Contact : anthony.schrapffer@cima.fcen.uba.ar