Synergetic use of IASI and TROPOMI for generating a tropospheric methane profile product

Matthias Schneider, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliever Sepúlveda, Alba Lorente, Jochen Landgraf, Tobias Borsdorff, Huilin Chen, Rigiel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jerome Pernin, Martin Steinbacher, Frank Meinhardt, Voltaire A. Velasco, Nicholas M. Deutscher, David Griffith, Dave Pollard, Hartmut Bösch, Tim Trent, Harald Sodemann

1 Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, Karlsruhe, Germany
3 Izana Atmospheric Research Center, Agencia Estatal de Meteorología (AEMET), Santa Cruz de Tenerife, Spain
4 Earth Science Group, SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
5 Center for Isotope Research, University of Groningen, Groningen, The Netherlands
6 Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, Finland
7 Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA, 91191 Gif sur Yvette, France
8 Laboratoire de Météorologie Dynamique (LMD), Palaiseau, France
9 Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf, Switzerland
10 Air Monitoring Network, Federal Environment Agency (UBA), Langen, Germany
11 Deutscher Wetterdienst, Albin-Schwaiger-Weg 10, Hohenpeissenberg, Germany
12 Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
13 National Institute of Water and Atmospheric Research Ltd (NIWA), Lauder, New Zealand
14 EOS Research Group, University of Leicester University Road, Leicester, LE1 7RH, UK
15 Geophysical Institute and Bjerknes Centre for Climate Research, Bergen, Norway

1: MUSICA IASI products
2: Combination of IASI and TROPOMI products
 - Method
 - Example 1: methane
 - Example 2: water vapour isotopologues
3: Summary and outlook

See also: https://doi.org/10.5194/amt-2021-31
MUSICA IASI products

MUSICA IASI (A + B (+C)), retrieval setup

Code: PROFFIT-nadir; different retrieval products: H₂O, δD, N₂O, CH₄, and HNO₃

Spectra and Jacobians

Full state averaging kernels

Retrieval

H₂O

N₂O

CH₄

HNO₃

Temperature

Surface

Water vapor spectroscopy

Line intensity (+5%)

Line broadening (+5%)

Continuum (+10%)

Simulation

Measurement

Meas.-Simu.
MUSICA IASI products

MUSICA IASI (A + B (+C), global, 2014-2020, ≈ 1.5bn retrievals)

Time series over Karlsruhe

Overpasses 20160627

≈300000 morning observations per day
(local time 9:30)
≈ 300000 evening observations per day
(local time 21:30)

Many validation studies:
Schneider et al. (2016), Borger et al. (2018), García et al. (2018), etc.

Example of MUSICA IASI fiducial referencing: δD

H2O [ppmv]
at 3.6 km a.s.l.
N2O [ppbv]
at 11 km a.s.l.
CH4 [ppbv]
at 22 km a.s.l.
HNO3 [ppbv]
year
Method: updating a MUSICA IASI profile product with information from a TROPOMI total column product

Data assimilation formalism:

\[x^a = x^b + G[y - Hx^b] \]
\[G = S^b H^T [HS^b H^T + S_\epsilon]^{-1} \]

Input

- \(x^b \): background state vector
 - \(\rightarrow \) MUSICA IASI profile product
- \(S^b \): background state error covariances
 - \(\rightarrow \) MUSICA IASI a posteriori covariances
- \(y \): measurement state vector
 - \(\rightarrow \) TROPOMI total column product
- \(H \): measurement forward operator
 - \(\rightarrow \) TROPOMI total column kernel
- \(S_\epsilon \): measurement state error covariances
 - \(\rightarrow \) TROPOMI total column noise

Output:

- \(x^a \): analysed state vector
- \(G \): Kalman gain matrix

For linear and “moderately non-linear” problems and adjusted IASI and TROPOMI a priori information, this analysed state vector \(x^a \) is identical to an optimal estimation retrieval that uses a combined \{IASI,TROPOMI\} measurement state vector.

Differences between the IASI and TROPOMI total columns will have the strongest impact in the lower troposphere.
Example 1: methane (CH$_4$), effect of combination on the averaging kernels

We use the TROPOMI XCH4 product as described in Lorente et al. (2021)
Example 1: CH$_4$ validation references

TCCON: for XCH$_4$

AirCore: for CH$_4$ in the UTLS

GAW: for CH$_4$ in the troposphere

AirCore: balloon-based in-situ sampling

Common signals in two nearby GAW stations are well representative for tropospheric CH$_4$
Example 1: validation of XCH₄

TROPOMI

MUSICA IASI

Combined

Combined as good as TROPOMI
Example 1: validation of CH$_4$ in the UTLS

Combined as good as MUSICA IASI
Example 1: validation of CH$_4$ in the troposphere

Combined much better than TROPOMI or MUSICA IASI: synergetic benefit for tropospheric CH$_4$!
Example 2: water vapour isotopologue ratios (δD)

The interesting quantity is the **ratio** between H2O and HDO, expressed as δD

Problem: we need an analytic framework for ratio remote sensing data

Solution (developed during MUSICA):

1. transfer the problem to the logarithmic scale: \(\frac{\partial \ln x}{\partial x} = \frac{1}{x} \partial x \)
2. use proxy state: \(\ln \frac{\tilde{x}_{\text{HDO}}}{\tilde{x}_{\text{H2O}}} = \ln \tilde{x}_{\text{HDO}} - \ln \tilde{x}_{\text{H2O}} \)

Transformation:

(H2O, HDO) state
→ (H2O, δD) proxy-state

\(A_p = P A_{\log} P^{-1} \).

Transformation matrix P for (H2O, δD) proxy-state:

\[
P = \begin{pmatrix}
+0.5 & \cdots & 0 & +0.5 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & +0.5 & 0 & \cdots & +0.5 \\
-1.0 & \cdots & 0 & +1.0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -1.0 & 0 & \cdots & +1.0
\end{pmatrix}
\]

Kernel: \(A \)

Proxy kernel: \(A_p \)
... analytic framework for ratio remote sensing data

Extension to column products:

$$a_p^T = P_X M_X^{-1} H_{\bar{X}}^{-1} a^T H M P^{-1},$$

with

$$H = \begin{pmatrix}
 h_1 & \cdots & 0 & 0 & \cdots & 0 \\
 \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & h_N & 0 & \cdots & 0 \\
 0 & \cdots & 0 & h_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & 0 & \cdots & h_N \\
\end{pmatrix},
\quad
H_{\bar{X}} = \begin{pmatrix}
 \sum_{i=1}^N h_i & 0 & 0 \\
 0 & \sum_{i=1}^N h_i & 0 \\
\end{pmatrix},
\quad
M_X = \begin{pmatrix}
 \bar{X}_{H2O} & 0 \\
 0 & \bar{X}_{HDO} \\
\end{pmatrix},
\quad
P_X = \begin{pmatrix}
 +0.5 & +0.5 \\
 -1.0 & +1.0 \\
\end{pmatrix}.$$
Example 2: Combination, effect on the averaging kernels

Here we use the X6D TROPOMI product of UoL-FP v0.9.4.

Proxy averaging kernels

MUSICA IASI retrieval

MUSICA IASI retrieval with TROPOMI “assimilated”

Comparison, column kernels

Comparison, column kernels

Here we use the X6D TROPOMI product of UoL-FP v0.9.4.
Example 2: Validation of surface-near data product

Validation reference: MUSICA NDACC profile data at Karlruhe (49°N)

Validation for individual observations, surface-near data product

Validation for 900m a.s.l.

Collocations:
(1) within 4h
(2) within 50km
Example 2: Validation, surface-near data product

Comparisons of 4-hourly means

Impact of averaging:

For combined data: when averaging 20 data points, scatter is within 25‰.
Summary and Outlook

• The MUSICA IASI data set is of very good quality and very comprehensive. It contains all info needed for its combination with other products: a priori, AVKs, and error covariances.

• Combination with TROPOMI XCH$_4$: capability to resolve tropospheric layer from ground to about 6 km above ground independently from the UTLS.

• Validation results: agreement within 1% with references and scatter wrt references of 1-1.5%

• Combination with TROPOMI XδD. Combination of ratio data is particularly complex but first studies look promising: lower tropospheric layer (ground – 2.5 km above ground) can be detected independently from free troposphere (3 – 6 km above ground).

• Outlook: IASI and TROPOMI successors will be together on the Metop Second Generation satellites, perfect for collocation, very promising!

Acknowledgement: TCCON data provided by TCCON partners, AirCore data provided by AirCore partners, CH4 GAW data provided by EMPA and UBA, TROPOMI XδD data (provided by ESA, project S5P+I_H2O-Iso), MUSICA IASI data generated with ForHLR (funded by BW and GER) and during DFG projects MOTIV and TEDDY.