

# Layered mantle flow beneath the NE Asia from inversion of surface wave dispersion using rj-MCMC method

Zhao Yanzhe<sup>1, 2\*</sup>, Guo Zhen<sup>2</sup>, Wang Yanbin<sup>1</sup> and Fan Xingli<sup>2</sup>

1 Department of Geophysics, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2 Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

EGU2021 Apr. 29th, 2021



2 Data and Method

3 Results and Discussion

4 Conclusion

- Geological background
  - Trench-arc-backarc features :
  - Volcanism: Arc volcanoes and Intraplate volcanoes
  - Extensional Basins, e.g. Songliao Basin, Bohaiwan Basin etc.
  - Marginal sea: Sea of Japan
  - Large fault zone: Tan-Lu Fault Zone



**M**S = Molucca Sea minor plate; BH = Bird's Head minor plate; WPB = West Philippine Basin; SB = Shikoku Basin; PVB = Parece Vela Basin; MT = Mariana Trough.

- **D** NEC = northeast China; ENCC=Eastern North Chian Craton ; KP = Korean Peninsula; KS = Korea Strait; SoJ = Sea of Japan; JI = Japanese Island.
- CBV = Changbaishan volcano; JPHV = Jingpohu volcano; LGV = Longgang volcano; XJDV = Xianjingdao volcano; CRV = Chuga-Ryong volcano; ULV = Ulleung volcano; HLV = Halla volcano; FJV = Fukue-jima volcano. TLFZ =Tanlu fault zone

- Questions about intraplate volcanoes
  - How is the large-scale mantle upwelling related to specific volcanoes?



(Faccenna et al., 2010)

#### (Kameyama, 2012)

- Questions about geodynamic process reflected in mantle flow
  - > What performance ?
  - Controlled by subduction? Back arc extension? Other reason?



© 2012 Encyclopædia Britannica, Inc.

Classical representation of Rayleigh-wave and shear wave velocity azimuthal anisotropy

100

150

100

Depth (km) 250

300

10

dc/dL 20s

--dc/dA 20s dc/dL 60s

- dc/dA 60s - dc/dL 100s

--dc/dA 100s

0 15

For phase velocity:  $\geq$ 

Rayleigh wave



For shear wave velocity:  $\hat{V}_{SV}(\psi) \approx \sqrt{\frac{L + G_c \cos 2\psi + G_s \sin 2\psi}{\rho}}$  $\frac{G_{c,s}}{L} \ll 1$  $\approx V_{SV} \left( 1 + \frac{G_c}{2L} \cos 2\psi + \frac{G_s}{2L} \sin 2\psi \right)$  $= V_{SV}(1 + A_{\nu s} \cos(2\psi - \phi_{\nu s}))$ Notice:  $|A_{vs}| = 0.5 \left| \left( \frac{G_c}{L} \right)^2 + \left( \frac{G_s}{L} \right)^2 \right|$  $\phi_{\nu s} = 0.5 \arctan(G_s/G_c)$ 

### **Data and Method**

• **Previous work: Two-station surface wave tomography** (Fan et al., GRL, 2020)



1%

Phase velocity anomaly (%

Distribution of stations, ray paths and selected earthquakes (Fan et al., 2020)

reversible jump Markov Chain Monte Carlo 

 $P(m|d) \propto P(d|m) \cdot P(m)$ **Bayes theory:** 

#### Model dimension is variable:

> MCMC is **reversible** itself

Model

uncertainty

Transdimensional sampling ---- "jumping" between dimension-different model space



• Our improvement: Layered prior for Shear wave velocity





- Moho: CRUST1.0±7.5km
- ➢ Vs: Layered prior setting

| Depth          | min $V_{sv}$ (km/s) | max $V_{sv}$ (km/s) |
|----------------|---------------------|---------------------|
| 0~min Moho     | 3.0                 | 4.2                 |
| In Moho Range  | 3.5                 | 4.7                 |
| max Moho~300km | 4.0                 | 5.0                 |
| 300~400km      | 4.0                 | 5.5                 |

#### 1. Single Knot

Data fit



A: near Changbaishan Volcano

B: near high-velocity block of SW Korean Peninsula



#### 1. Single Knot



Probability

#### 2. 3-D model



Horizontal slices at different depths

#### 2. 3-D model

### Point 1: About Intraplate Volcanoes



#### 2. 3-D model

Point 1: About Intraplate Volcanoes



Localized low-velocity related to deeper upwellings

The upwelling from deeper mantle of big mantle wedge display a characteristic of localized low-velocity area at the uppermost mantle

## 2. 3-D model

# Point 1: About Intraplate Volcanoes



Lithospheric block to ~150km

 NE China, Supporting: Downwelling of Songliao Basin, inducing localized convective upwelling induced by

#### 2. 3-D model



- SW Korean :
  - Possible cratonic root
  - Possible process of Ithospheric dripping and convective upwelling

# 2. 3-D model

extension

# Point 2: About Mantle Flow (two-layer model)



**Results and Discussion** 

• Upper layer: perpendicular to the Pacific slab Possibly Controlled by Pacific subduction and back arc



(Kameyama, 2012)

# 2.3-D model

# Point 2: About Mantle Flow (two-layer model)



• Lower layer:

- Seems to be unrelated to the mantle flow caused by the subduction plate
- Background mantle flow associated with plate movement?
- Mantle flow caused by other factors?

# 2. 3-D model

# Point 2: About Mantle Flow (two-layer model)

- Two-layer model: SKS check
- Prediction based on this model fits well with observations in this 44°N region, especially about the fast direction
- A trend converging in SW Japan



# 2. 3-D model

# Point 2: About Mantle Flow (two-layer model)

- Two-layer model: SKS check
- Prediction based on this model fits well with observations in this region, especially about the fast direction
- A trend converging in SW Japan
  - Possible mantle flow across the Nankai through caused by the expansion of Philippine Sea Plate (See background)



(Obayashi et al., 2013)

Yellow bar: observation Black bar: prediction of our model

### Conclusion

- About the rj-MCMC method
  - Good distribution can be obtained through rj-MCMC inversion. The efficiency and reliability of inversion can be greatly improved when adding the layered prior
- About the intraplate volcanism
  - Iocalized upwelling with lateral connections between volcanoes can be observed in uppermost mantle, apart from upwelling in the whole big mantle wedge from deeper mantle
  - Convective local upwelling induced by lithospheric dripping may exist in South Korea
- About the anisotropy and related dynamical feature
  - > Apparent anisotropy related to back-arc extension can be found beneath the Japan Sea
  - Two-layer anisotropy can be observed in this region. The predicted SKS splitting patterns based on it fit well with the observations, showing more complex mechanism of mantle flow.
  - The anisotropy pattern with a trend converging in SW Japan may be related to ossible mantle flow across the Nankai through caused by the expansion of Philippine Sea Plate (See background)

#### Reference

Faccenna, C., Becker, T.W., Lallemand, S., Lagabrielle, Y., Funiciello, F., and Piromallo, C. (2010). Subduction-triggered magmatic pulses: A new class of plumes? *Earth and Planetary Science Letters*, 299(1):54–68.

Fan, X., Chen, Q.-F., Legendre, C. P., and Guo, Z. (2020). Intraplate volcanism and regional geodynamics in ne asia revealed by anisotropic rayleigh-wave tomography. *Geophysical Research Letters*, 47(1).

Guo, Z., Chen, Y. J., Ning, J., Yang, Y., Afonso, J. C., and Tang, Y. (2016). Seismic evidence of ongoing sublithosphere upper mantle convection for intra-plate volcanism in northeast china. *Earth and Planetary Science Letters*, 433:31–43.

Kameyama, M. and Nishioka, R. (2012). Generation of ascending flows in the big mantle wedge (bmw) beneath northeast asia induced by retreat and stagnation of subducted slab. *Geophysical Research Letters*, 39(10).

Kreemer, C., W.E. Holt, and A.J. Haines (2003), An integrated global model of present-day plate motions and plate boundary deformation. *Geophys. J. Int.*, 154: 8-34.

Levander, A., Schmandt, B., Miller, M. S., Liu, K., Karlstrom, K. E., Crow, R. S., Lee, C. T. A., and Humphreys, E. D. (2011). Continuing colorado plateau uplift by delamination-style convective lithospheric downwelling. *Nature*, 472(7344):461–U540.

Montagner, J.-P., Griot-Pommera, D.-A., and Lavé, J. (2000). How to relate body wave and surface wave anisotropy? *Journal of Geophysical Research: Solid Earth*, 105(B8):19015–19027.

#### Reference

Obayashi, M., Yoshimitsu, J., Nolet, G., Fukao, Y., Shiobara, H., Sugioka, H., Miyamachi, H., and Gao, Y. (2013), Finite frequency whole mantle P wave tomography: Improvement of subducted slab images. *Geophys. Res. Lett.*, 40, 5652–5657.

Seton, M., Müller, R. D., Zahirovic, S., Williams, S., Wright, N., Cannon, J., Whittaker, J., Matthews, K., McGirr, R. (2020), A global dataset of present-day oceanic crustal age and seafloor spreading parameters, *Geochemistry, Geophysics, Geosystems*, doi: 10.1029/2020GC009214

Song, J.-H., Kim, S., and Rhie, J. (2020). Heterogeneous modification and reactivation of a craton margin beneath the korean peninsula from teleseismic travel time tomography. *Gondwana Research*, 81:475–489.

Tang, Y., Obayashi, M., Niu, F., Grand, S. P., Chen, Y. J., Kawakatsu, H., Tanaka, S., Ning, J., and Ni, J. F. (2014). Changbaishan volcanism in northeast china linked to subduction-induced mantle upwelling. *Nature Geoscience*, 7(6):470–475.

Yao, H. (2015). A method for inversion of layered shear wavespeed azimuthal anisotropy from rayleigh wave dispersion using the neighborhood algorithm. *Earthquake Science*, 28(1):59–69.

Zhao, D. and Ohtani, E. (2009). Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics. *Gondwana Research*, 16(3):401–413.

# Thanks!

# e-mail: zzyzpku@pku.edu.cn