Muography: a density imaging technique based on atmospheric muons

Applications: archaeology, volcanology, hydrology, speleology, geology, mining, civil engineering, oceanography, etc.
- 2D density images (muon radiography)
- 3D density images (muon tomography)
- Time-sequential 2D or 3D

Muography applied to studying bedrock fracturing and weathering:
- Imaging of soil layering and permeability structures
- Stability of tunnels (rock mechanics)
- Monitoring of rock and soil slopes
- Imaging weathered profiles and fracture patterns

Our plans:
- Field measurements in N Finland (tor formations)
- Imaging of thick kaolinitic saprolites of pre-Pleistocene age

Marko Holma1,2,3,4, Pertti Sarala5, Adrian M. Hall6, Pasi Kuusiniemi2,3,4, Hiroyuki K. M. Tanaka7,8,4, and Dezso Varga9,4

1Kerttu Saalasti Institute, University of Oulu, Finland
2Muon Solutions Oy, Finland
3Arctic Planetary Science Institute, Finland
4Virtual Muography Institute (global)
5Geological Survey of Finland
6Department of Physical Geography, Stockholm University
7Earthquake Research Institute, University of Tokyo, Japan
8International Muography Research Organization (MUOGRAPHIX), University of Tokyo, Japan
9Wigner Research Centre for Physics, Hungary

For those interested in scientific cooperation with VMI, contact M. Holma for guidance:
marko.holma@muon-solutions.com