Identification of Kelvin-Helmholtz vortices at the Earth's magnetosphere

A. Settino, D. Perrone, Yu. V. Khotyaintsev, D. B. Graham, O. Pezzi, F. Malara, F. Valentini

E-mail adriana.settino@unical.it

- > Brief overview of the Kelvin-Helmholtz (KH) instability;
- > Kinetic features to identify KH vortices
 - Hybrid Kelvin-Helmholtz simulation;
 - MMS observation of KH event at the Earth's magnetopause;
 - comparison between Kelvin-Helmholtz simulation and *in-situ* measurements;
- Large scale features to identify KH vortices
 - Mixing parameter to identify vortex boundary and phase;
 - Statistical analysis of the identified vortices.
- Summary

Overview

KH instability can be generated in correspondence of velocity shears. Such systems can be observed in many natural environments

Observation of the *"Jupiter eye"* in the visible wavelength

We are interested in studying:

- Non-collisional, magnetized plasmas;
- Shear width $\Delta x \simeq d_p$

A kinetic approach is necessary

KHI at the Earth Magnetopause

Hybrid Vlasov Maxwell System

- >Hybrid approximation: only protons kinetic dynamics is retained and electrons are treated as a massless fluid;
- > Low frequencies approximation: displacement current is discarded;

> Quasi-neutrality condition: $n_p \simeq n_e = n$

$$\begin{aligned} \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} &= 0\\ \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}\\ \nabla \times \mathbf{B} &= \mathbf{J}\\ \mathbf{E} &= -\mathbf{u} \times \mathbf{B} + \frac{1}{n} \mathbf{J} \times \mathbf{B} - \frac{1}{n} \nabla p_e\\ p_e &= nT_e \end{aligned}$$

Values used for normalization

$$\tilde{u} = v_A; \quad \tilde{\omega} = \Omega_{cp} \quad \tilde{p}_e = \tilde{n}m_p v_A^2$$
$$\tilde{l} = v_A / \Omega_{cp} = c / \omega_{pp} = d_p$$
$$\tilde{E} = m_p v_A \Omega_{cp} / e$$

Hybrid simulation of KH instability

isocontour of total current density along the whole simulation time

2D-3V simulation with the HVM code;

We start from an exact equilibrium configuration (*Malara et al.* PRE, 2018)

Generation of large scale structures that collapse in two vortices and form thin current sheets.

Temporal correlation

Ion non-Maxwellianity 1.0 0.01 f(v) <lj|²>×10³ **g**_M ~ ~ 0.1 | V $\epsilon_M = \frac{1}{n_i} \sqrt{\frac{1}{n_i}}$ $\int \left[f_i - g_M\right]^2 d^3 v$ 100 300 400 200 0 t Greco et al. 2012

Total current density and Ion non-Maxwellianity are highly correlated in time

Kinetic features

Ion non-Maxwellianity

f(v)

0.12

0.1

0.08

0.06

0.04

0.02

- 1. |j| peaks at the edges of the vortex;
- 2. ϵ_{M} peaks inside the vortex.

[Settino et al., ApJ, 2021 (in press)]

Comparison between simulation and in-situ data

Vortex boundaries have been identified by Hwang et al. 2020

[Settino et al., ApJ, 2021 (in press)]

VDF at the center of the vortex

HVM simulation CENTER

[Settino et al., ApJ, 2021 (in press)]

VDF at the edge of the vortex

0.15 3 0.15 3 3 0.15 (C) (b) (a) 2 2 2 0.1 0.1 1 0.1 1 1 V_{ExB}/V_{th} ν_B/ν_{th} v_B/v_{th} 0 0 0.05 0.05 0.05 -1 -1 -2 -2 -2 -3 0 -3 0 -3 0 -2 2 0 -2 0 2 -2 0 2 v_{ExB}^{\prime}/v_{th} $v_{Bx(ExB)}/v_{th}$ $v_{Bx(ExB)}/v_{th}$ MMS4 - 2017-05-05T20:05:08.10 + 1.05 s EDGE 3 0.4 3 0.4 3 0.4 (b) (C) 2 (a) 2 2 0.3 0.3 0.3 1 1 ₽ 0 **E**×**B** 1-1 $v_{B}^{V}v_{th}$ $v_{B}^{V}v_{th}$ 0.2 0.2 0 0 0 0.2 -1 -1 0.1 0.1 0.1 -2 -2 -2 -3 -3 -3 0 0 0 -2 -2 -2 2 2 2 0 0 0 VEXB/Vth $v_{Bx(ExB)}/v_{th}$ $v_{Bx(ExB)}/v_{th}$

HVM simulation EDGE

[Settino et al., ApJ, 2021 (in press)]

Large scale features to identify Kelvin-Helmholtz vortices and their evolutionary stage

Mixing parameter

Ion and electron mixing

$$\mu_{\alpha} = \frac{\sigma_{\alpha,a} - \sigma_{\alpha,b}}{\sigma_{\alpha,a} + \sigma_{\alpha,b}}$$

where, $\sigma_{\alpha,a} = \int_{E_{\alpha,a}} f_{\alpha}(E,t) dE$

[Settino et al., to be submitted]

Statistical analysis

69 crossings have been identified;

- Each crossing has been categorized according to its shape in the space of the mixing parameter;
- For each time interval the percentage of vortices has been evaluated.

Three main shapes have been recognized in the space of the mixing parameter:

- (a) same path trajectory;
- (b) different path trajectory;
- (c) complex trajectory with loops and twists.

[Settino et al., in prep.]

Summary

- Comparison between KH simulation and observations has suggested new quantities that can be used for the identification of vortices:
 - 1. Magnitude of the total current density peaks at the edges of the vortices and has a minimum inside the vortex;
 - 2. The ion non-Maxwellianity is low at the edges of the vortex and increases inside the vortex;
- Single spacecraft measurements which need a good resolution for the particles instrument;
- > These quantities can be used in the Solar Orbiter mission to identify KH vortices.
- Electrons and ions mixing provide information about the topology and the plasma mixing respectively;
- > The mixing parameters allow the identification of the evolutionary stage of the KH instability.

Thank you for listening!

[Kieokaew et al. 2021, arxiv]