

The evolution of future Antarctic surface melt using PISM-dEBM-simple

Julius Garbe^{1,2}, Maria Zeitz^{1,2}, Uta Krebs-Kanzow³, Ricarda Winkelmann^{1,2}

¹Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany ²Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany ³Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Antarctica is losing mass...

- Overall mass changes currently dominated by Amundsen Sea **Embayment sector of West Antarctica,** driven by sub-shelf melting and ice discharge
- > East Antarctica close to balance, but contribution to overall mass change slightly positive in recent decades, as mass losses are compensated by enhanced snowfall
- > Any surface melt restricted to lowelevation coastal zones (Antarctic Peninsula & shelves), because average surface temperatures too low over most parts of the ice sheet

QuikSCAT / Bell et al. (2018)

Q: How is the surface mass balance going to change in the future?

- In 21st century projections, increasing surface mass balance in East Antarctica outweighs increased discharge even under high-end forcing scenarios
- However, in long-term warming simulations positive surface mass balance trend shows peak and subsequent reversal

(e.g. Golledge et al., 2015; Golledge, 2020; Garbe et al., 2020)

Positive feedback mechanisms: Increased sensitivity to changes

- Owing to melt-elevation feedback, this effect can be enhanced once a surface lowering is triggered
- Melt also lowers surface reflectivity (albedo), in return causing more melt (melt-albedo feedback)
- Risk of hydrofracturing and/or marine ice-cliff instability driven by increased surface melt-water production

"Filling the gap": The diurnal Energy Balance Model (dEBM)

- > Long-term simulations require fast models + need to account for feedbacks
- Gap between process-based regional climate models and empirical temperature-index SMB schemes in terms of computational efficiency versus physics-based process detail

	Temperature-index schemes (e.g. PDD)	dEBM-simple	RCMs (e.g. RACMO)
Processes / feedbacks	•	••	•••
Comput. efficiency	•••	•••	•

- > dEBM-simple: "simple" version of diurnal Energy Balance Model (Krebs-Kanzow et al., TC 2018; Zeitz et al., TC 2021)
 - ✓ Extends PDD approach to include influence of solar radiation
 - ✓ Atmospheric transmissivity parameterized based on surface altitude
 - ✓ Surface albedo parameterized as a function of melting, implicitly accounting for ice-albedo feedback
 - ✓ Requires only monthly temperatures and precipitation as input, yet accounts for diurnal energy cycle

$$M = \frac{\Delta t_\Phi}{\Delta t \, \rho_{\rm w} \, L_{\rm m}} \begin{bmatrix} \frac{\rm insolation-driven \, melt} & {\rm temperature-driven \, melt} \\ (1-\alpha)\tau \, SW_\Phi + c_1 \, T_{\rm eff} + c_2 \end{bmatrix}_{\rm albedo} \begin{bmatrix} 1 & {\rm ToA \, insolation} \\ {\rm atm. \, transmissivity} \end{bmatrix}_{\rm dEBM \, parameters}$$

Methods

Ice sheet model framework: The Parallel Ice Sheet Model

- We adopt dEBM-simple as surface mass balance module in the open-source Parallel Ice Sheet Model (PISM) and apply it in an Antarctic setup
 - Finite differences model
 - Regular grid (8 km)
 - > Hybrid SIA + SSA ice flow
 - > Thermo-dynamically coupled: ice temperatures and flow are solved
 - > Includes: sub-shelf melt module, calving, GIA model, ...

Calibration:

PISM-dEBM-simple reproduces Antarctic melt patterns

 Calibration to historical (1950-2015) melt patterns using RACMO

 Present-day (2005-2015 DJF mean) melt pattern close to RACMO; high melt rates slightly underestimated

Idealized experiments: Evolution of Antarctic surface melt until 2100

- Idealized experiments: prognostic
 21st century SSP5-8.5 simulations
 (no ocean warming!)
- Parametric uncertainty check via sensitivity ensemble
- 8-fold increase in total surface melt in 2100 compared to today (reference run)
- Expansion of summer melt area to lower latitudes and higher elevations; large parts of Filchner-Ronne, Ross and Amery ice shelves
- > ~140% increase in total SMB
- However, considerable uncertainty of melt due to albedo parameterization

Temperature versus insolation: Increasing role of temperature-driven melt share

- On average, insolation-driven melt dominant over most parts of the ice sheet, as interior too cold
- At present, relative share of temperature-driven melt in total melt comparatively small, however, increases significantly (in magnitude and extent) by 2100

Long-term experiments: Effects of enhanced surface melt on the ice sheet

- Extending simulations at fixed end-ofcentury climatic boundary conditions until year 3000 reveals strong influence of surface melt on ice topography & dynamics
 - Large-scale **reduction of surface altitude** in sensitive ice sheet regions in East and West Antarctica

(see also Golledge et al., GRL 2017)

Enhanced by interplay of melt-albedo feedback as well as melt-elevation feedback

Take home: Feedbacks matter on long time scales!

Finally...

Manuscript in preparation The Cryosphere, to be submitted soon!

Code will be made publicly available on GitHub / Zenodo

Any questions? See online material or contact me: julius.garbe@pik-potsdam.de

www.pik-potsdam.de/members/garbe/

