# Live fuel moisture content approach using satellite data for Portugal mainland

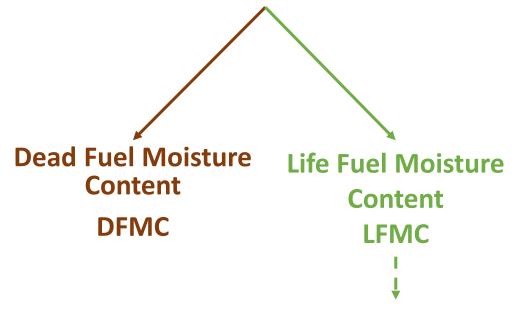
Catarina Alonso<sup>1</sup>, Rita Durão<sup>1,2</sup> and Célia Gouveia<sup>1,3</sup>

<sup>1</sup>Instituto Português do Mar e Atmosfera (IPMA), Portugal <sup>2</sup>Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa <sup>3</sup>Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa














# Rationale

The **fuel moisture content** (FMC) is an important property to assess fire danger, to control fuel ignition and fire propagation.



- Plants'adaptation to drought
- Capacity of extracting water from soils that vary among different vegetation species



The estimation **LFMC** plays an important role to improve fire danger assessment, bringing also advantages in the study of the dynamics of biodiversity and biomass understory recovery.



# Data and Methods

#### LFMC in-situ measurements

Limited spatial coverage and temporal sampling

#### **Solution:**

## Remote sensing data

Overcome space-time constraints and to develop methodological approaches to assess space-time **LFMC** variations

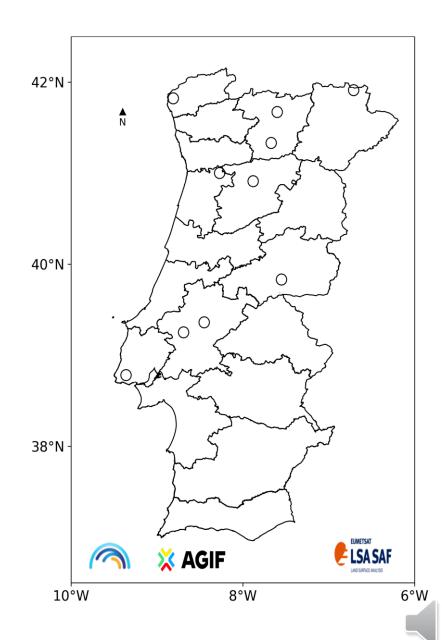
#### Leaf Area Index (LAI)

The amount of live green leaf material present in the canopy per unit of ground surface Interdependent form **LFMC** with similar seasonal and interannual trends

**Land Surface Temperature (LST)** 

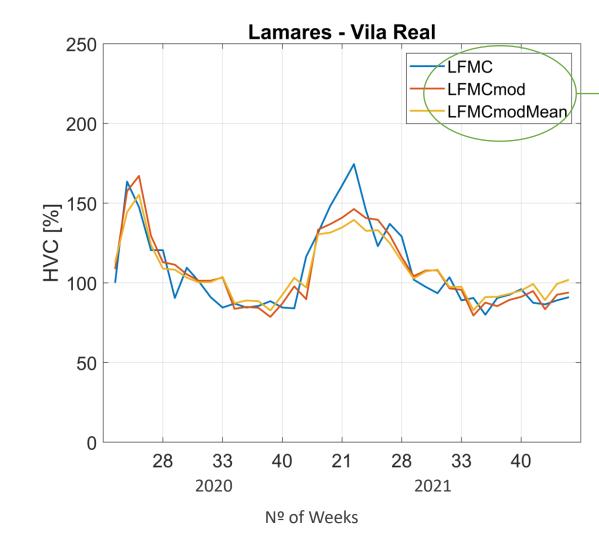


# Data and Methods


## Statistical model to pixel by pixel for Portuguese national scale

• LAI and LST products, delivered by the EUMETSAT LandSurface Analysis Satellite Applications Facility (LSA SAF).

#### For <u>every week</u>:


LAI mean between Tuesday and Thursday
LST mínimum (hourly) between Monday and Friday

 LFMC in-situ data for Atlantic Scrub are routinely collected and provided over 10 monitoring sites by AGIF/ICNF national authorities and disseminated by IPMA, between 2020 and 2021.



# Results

### **Best Model**



LFMC – LFMC measure in-situ for the site.

LFMCmod – LFMC modulated with b coefficients for the site.

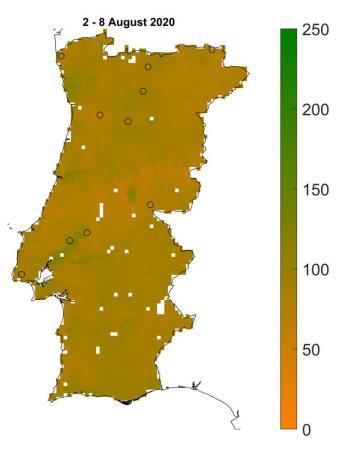
LFMCmodMean –LFMC modulated with b coefficients mean from all 10 sites.

Nº in-sito observations = 39

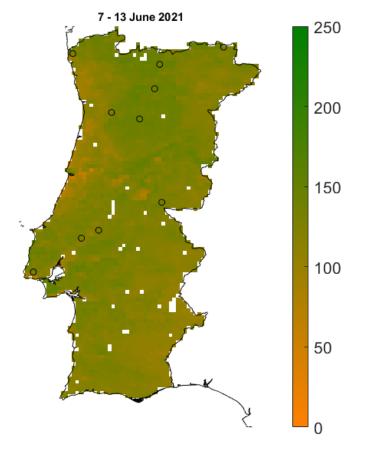
$$R = 0.89$$

$$R_{CrossValidation} = 0.87$$

$$b_{LAI} = 0.90$$


$$b_{LSTmin} = -0.23$$

$$b_{LAI\_mean} = 0.70$$


$$b_{LSTmin\_min} = -0.26$$



# Results



|                   | LFMC | LFMC<br>mod |
|-------------------|------|-------------|
| Bragança          | 83   | 90          |
| Caminha           | 87   | 90          |
| Chamusca          | 87   | 86          |
| Castro<br>Daire   | 71   | 102         |
| Chaves            | 84   | 103         |
| Vila Real         | 86   | 104         |
| Castelo<br>Branco | 70   | 93          |
| Santarém          | 87   | 121         |
| Sintra            |      | 102         |
| Vale de<br>Cambra | 98   | 87          |



|                   | LFMC | LFMC<br>mod |
|-------------------|------|-------------|
| Bragança          | 133  | 159         |
| Caminha           |      | 135         |
| Chamusca          | 104  | 151         |
| Castro<br>Daire   | 101  | 170         |
| Chaves            | 105  | 165         |
| Vila Real         | 146  | 166         |
| Castelo<br>Branco | 87   | 163         |
| Santarém          | 126  | 145         |
| Sintra            | 122  | 154         |
| Vale de<br>Cambra | 157  | 157         |



# **Discussion and Conclusions**

- Results revealed good correlation values between LFMC in-situ data and LFMC estimated.
- These results vary spatially, being higher over the most sampled locations, as expected; and have the drawback of being site-specific.
- The influence of LAI is higher than the minimum of LST, being LST less important in the northeast Portugal.
- The study is at a preliminary stage, in order to improve the robustness of the model it was necessary:
  - Higher frequency of in situ measurements;
  - More in-situ measurement sites in the south of the country.
- Further work will focus on the assessment of the remote sensing-based LFMC estimations uncertainty, applying the analysis to other vegetation classes and the linking of LFMC to fire danger and behavior.

# Thank you ©

For any questions, please contact me by e-mail: catarina.alonso@ipma.pt

#### **Acknowledgments:**

Many thanks to ICNF/AGIF colleagues, namely Yannick le Page and António Loureiro, that are responsible for all the processes to retrieve LFMC in-situ measurements and kindly share with us.

This study was performed within the framework of the LSA-SAF, co-funded by EUMETSAT and was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project FIRECAST (PCIF/GRF/0204/2017) and by the 2021 FirEUrisk project funded by European Union's Horizon 2020 research and innovation programme under the Grant Agreement no. 101003890).

