

A ten-year trajectory of hydrological recovery in a restored blanket peatland

Emma Shuttleworth (emma.shuttleworth@manchester.ac.uk), Martin Evans, Tim Allott, Martin Kay, Adam Johnston, Donald Edokpa, Tim Howson, Joe Rees, Jonny Ritson, Dave Milledge, Salim Goudarzi, Tom Spencer, Michael Pilkington

Restoration on Kinder Edge

Restoration on Kinder Edge

Restoration on Kinder Edge

Changes on the ground

Intervention

2010

2011

Lime, seed,

fertiliser, mulch

Company of the seed of the seed

LSFM + blocking

Sphagnum

VEGETATION

Rapid reduction in bare peat cover

Trajectories diverge after application of *Sphagnum*

BRYOPHYTES

Progressive increase in *Sphagnum* cover after initial application

WATER TABLE

Steady, year-on-year improvements - restored water tables rising towards surface

Higher surface moisture and resistance to drying under *Sphagnum*

WATER FLOW

Step change following initial treatment, no further improvement

Step change following initial treatment, gradual improvement following *Sphagnum* planting

SUMMARY

- Restored peat is getting wetter!
- Addition of *Sphagnum* maintains wetter conditions better than 'standard' re-vegetation
- Peak discharges are lower, lag times are longer, but no change in volume of runoff
 → surface roughness key driver of slowing the flow of water
- Addition of Sphagnum provides further roughness to slow the flow
- No conflict between re-wetting for Sphagnum and slowing runoff for flood risk management

Find out more about what this means at the catchment scale later in the week...

Goudarzi et al., *Investigating process drivers* of Natural Flood Management and its flood risk reduction potential across scales.

Fri 27 May, 14:26–14:33 in HS 2.4.4 Hydrological extremes: from droughts to floods