

EGU22: AS1.18-1006

Change in characteristics of Monsoon low pressure systems under a warming climate

Tresa Mary Thomas¹, Govindasamy Bala^{1,2} and Srinivas V.V^{1,3}

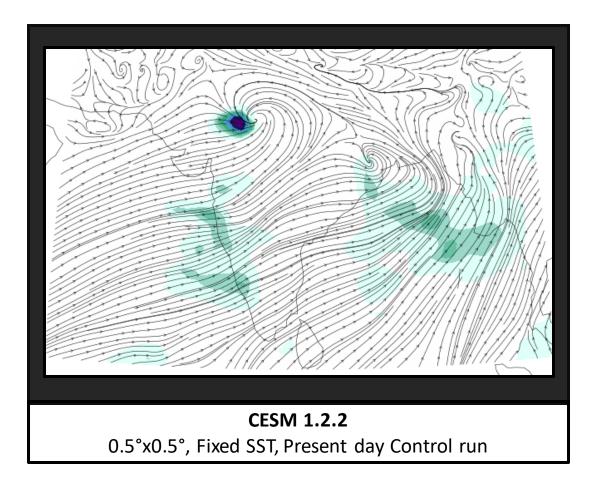
¹Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore

²Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore

³ Department of Civil Engineering, Indian Institute of Science, Bangalore

Contact: tresathomas@iisc.ac.in

Indian Monsoon


• Derived from Arabic word '*Mausam*' for season: seasonal change in direction of wind over Arabian Sea.

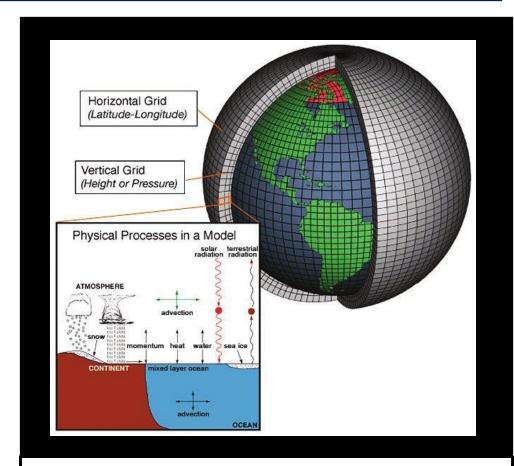
- Spanning: June September
- Copious Rain -ISMR: 85cm (80% of annual precipitation)
- Manifestation of seasonal migration of ITCZ in response to seasonal variation in solar radiation.

Low Pressure systems

- Synoptic scale tropical disturbances which periodically form in quasi stationary monsoon trough during southwest Indian Monsoon Season.
- Major Rain bearer for the country (more than 50% of monsoon precipitation)
- Form mostly over northern Bay of Bengal.

Properties	Values	
Direction	West -Northwest	
Average Speed	170 km/day	
Lifetime	3-6 days	
Length Scale	1000-2000 km	
Vertical Scale	9 km	
Frequency	14 / season	

Low Pressure Systems


• Provide copious rain for agriculture depended India.

- But triggers floods causing disastrous effects at many locations
- 78% of extreme precipitation events in the country are LPS related (Thomas et al. 2021)
 - Uttarakhand flood in 2013,
 - Kerala flood in 2018

Global Climate Models

- Have been used to understand behavior of tropical systems under warming climate.
- Inconsistency in LPS statistics
 - Non-significant change in the number of depressions over BoB under quadrupling of CO₂ (Stowasser et al. 2009).
 - Weakening of LPS activity and poleward shift under RCP8.5 scenario (Sandeep et al. 2018).
 - No significant change in number and spread of depressions under RCP8.5 scenario (Rastogi et al. 2018).

Climate projections FAQ (2012)

Model Details

Community Earth System Model 1.2.2 (CESM 1.2.2)

Compset

Resolution

Atmospheric Component

Vertical Levels

• Land Component

• Ocean Component

Sea Ice Component

Time Scale

• Time Period

Spin-up

Experiments

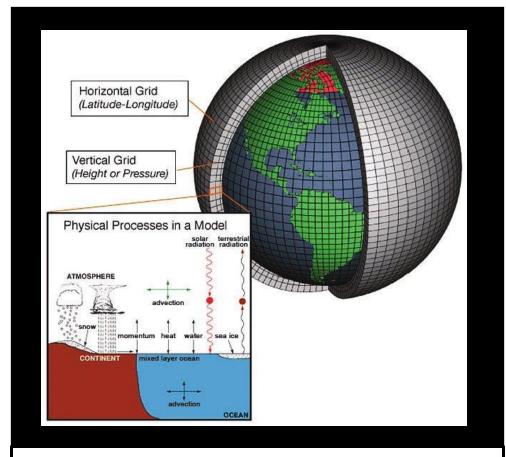
: B_2000_CN (fully coupled)

 $: 0.9^{\circ} x 1.25^{\circ}$

: CAM4

: 26

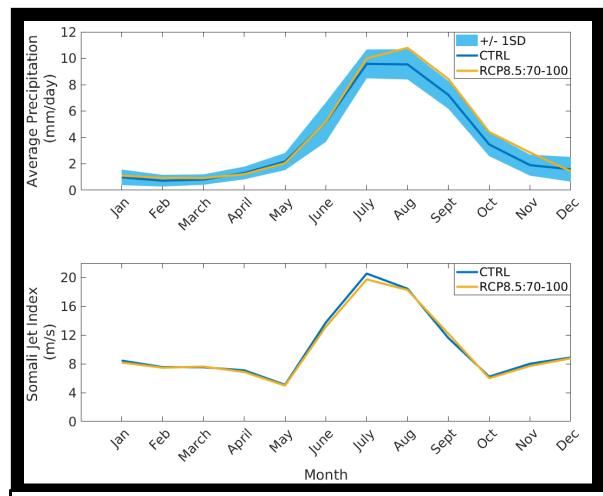
: CLM4


: PoP2

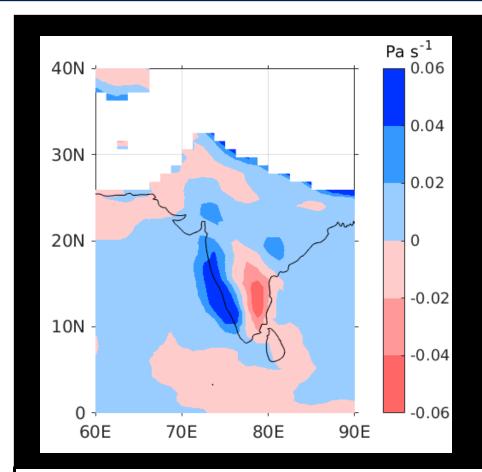
: CICE4

: 6-hourly

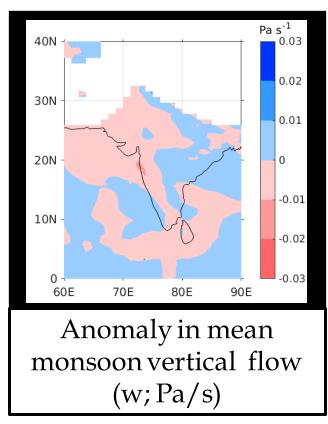
: 37 years

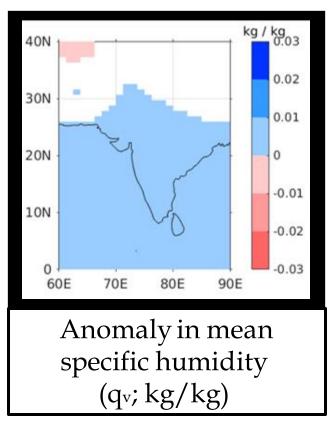

: 201 years

Climate projections FAQ (2012)

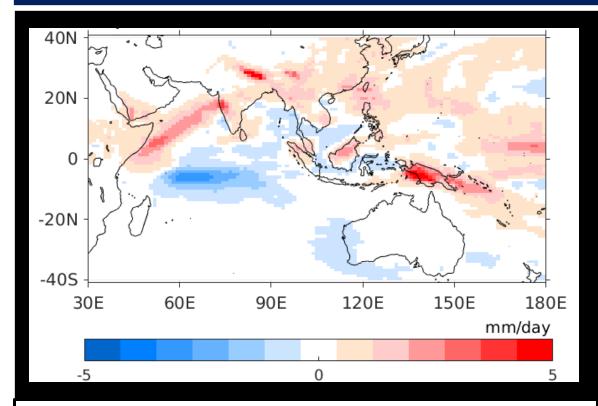

CTRL : Present-day control simulation

• **RCP8.5_70-100** : RCP8.5 scenario for the period 2070-2100

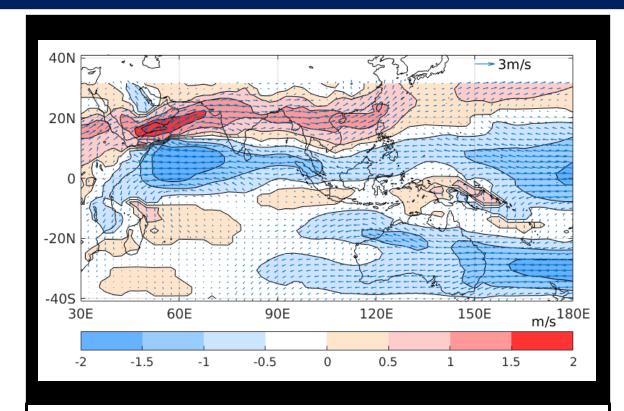



Seasonal cycle of precipitation (mm/day) and Somali jet Index (m/s) over India

- Monsoon Rainfall
 - CTRL = 96.4 ± 7.5 cm (70.9%)
 - RCP8.5 = 105.2 ± 8.5 cm (69.8%)
- Precipitation increase is larger in the late summer monsoon and post monsoon period (August-December).
- Somali Jet Index (SJI): Calculated as kinetic energy of winds at 850hPa averaged over 50°-65°E and 5°-15°N.
- Slight decrease in SJI is simulated in monsoon circulation under warming climate.

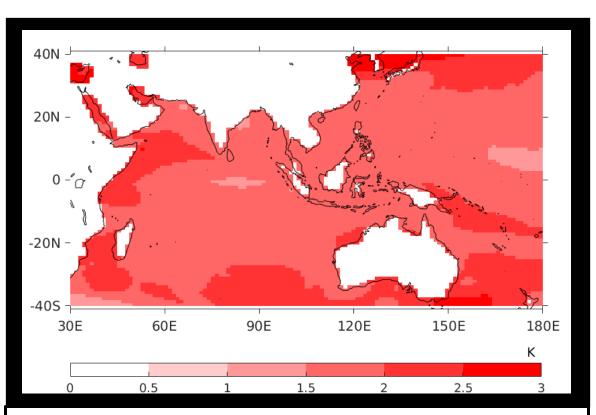


Anomaly in mean monsoon vertical moisture flow (wq_v; Pa/s) at 900hPa of RCP8.5_2070-2100 relative to CTRL



- More moisture convergence (measured in terms of wq_v) occurs over India under warming climate.
- Larger contribution towards convergence comes from larger moisture content.

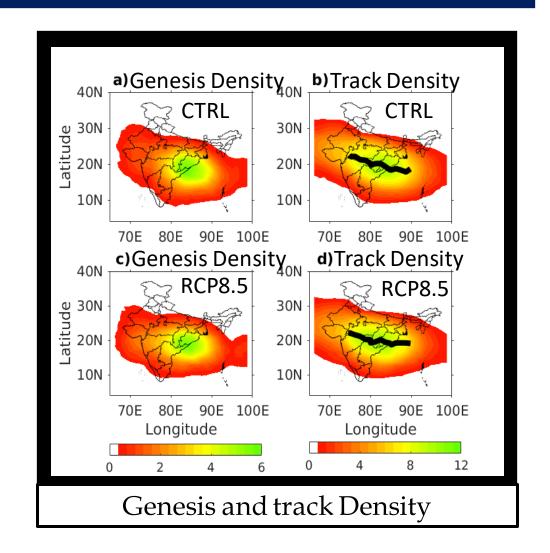
Anomaly in mean monsoon precipitation (mm/day) of RCP8.5_2070-2100 relative to CTRL


Negative precipitation anomaly exist over equatorial Indian ocean.

Anomaly in mean 850mb wind (m/s) of RCP8.5_2070-2100 relative to CTRL

A pair of anticyclones over west Indian ocean

- Southern component of anticyclone weakens the climatological cross-equatorial flow and limits upwelling off Somalia.
- Easterly anomalies over the south Arabian sea opposes the climatological westerlies and deepens the thermocline.
- Both reduce the upwelling over Somalia and increase SST.
- Enhanced evaporation over the Arabian sea leads to an increase in rainfall over peninsular parts of India.


Anomaly in sea surface temperature (K) of RCP8.5_2070-2100 relative to CTRL

Genesis and Track Density

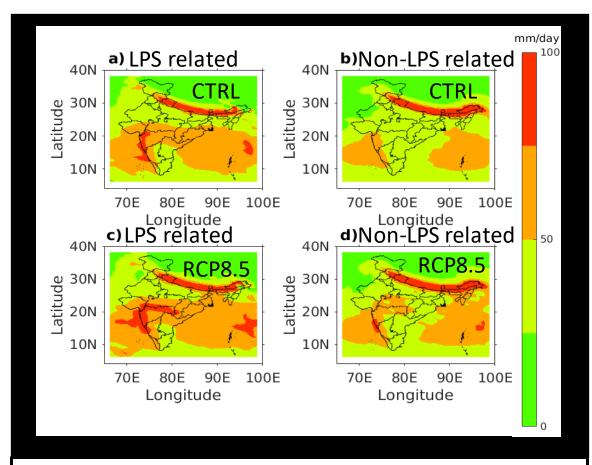
- **Genesis Density**: Number of genesis per year within 500km radii of the location.
- Track Density: Number of tracks per year within 500km radii of the location.

Average numbers per year

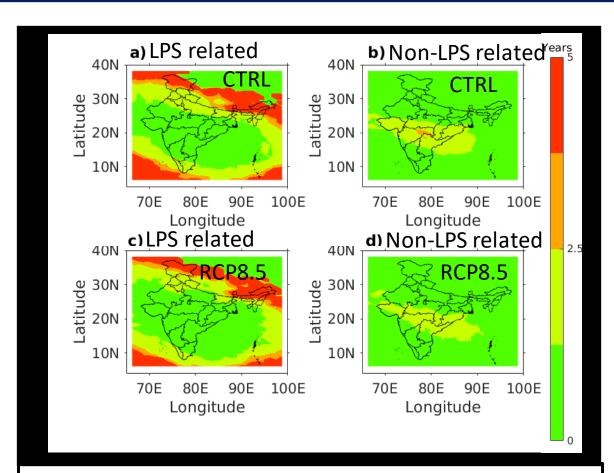
Model	LPS	Lows	Depressions	Deep depressions	LPS days
CTRL	13.6	8.0	4.6	1.0	63.1
	± 2.6	±3	± 1.8	± 0.8	±8.9
RCP8.5_	13.9	7.3	5.2	1.4	62.3
70-100	± 2.4	± 2.2	± 2.1	± 1.0	± 11.6

Insignificant change in LPS activity?

Mean 850 hPa zonal winds averaged over the longitudinal belt 70°E-90°E


- Barotropic Shear $(\partial U/\partial y)$: slope of mean zonal wind between 14°N to 26°N. Decrease in magnitude and poleward shift in latitudinal extent under warming climate.
- Specific humidity between 850-500hPa ($Q_{850 \text{ to } 500}$): averaged over 80°E-100°E, and 10°N-30°N. *Increase in magnitude over Indian mainland under warming climate*.

Monsoon LPS are moist barotropic instabilities which draws initial energy from barotropic shear and later from latent heat.


Model	∂U/∂y (s ⁻¹)	Q850 to 500 (g/kg)
CTRL	-0.78	8.8
RCP8.5_70-100	-0.75	10.4

Combined effect of the weakened barotropic shear and enhanced moisture content likely cause insignificant change in the LPS frequency under a warming climate.

Extreme Precipitation

Average extreme precipitation (daily precipitation greater than 95th percentile; mm/day)

Return period of extreme precipitation events (daily precipitation greater than 95th percentile; years)

Extreme Precipitation

- CTRL simulation: average extreme precipitation above 50mm/day
 - associated with LPS: 43.5% of total Indian mainland
 - Not associated with LPS: 17.8% of total Indian mainland

• The number of locations with extreme precipitation greater than 50 mm/day increases by 25% when associated with LPS under warming climate.

• The increase in the number of extreme events not associated with LPS reduces the return period of such extremes under a warming climate but are still not as frequent as those associated with LPS.

Conclusions

- CESM1.2.2 is used to investigate the effect of climate change corresponding to the RCP8.5 scenario on LPS characteristics during the summer monsoon season over India.
- The enhancement in monsoon precipitation (9.2%) is attributed to enhanced moisture convergence over India primarily due to enhanced moisture content.
- Under the RCP8.5 scenario, there are no significant change in the simulated number of LPS and spatial pattern of its characteristics over the Indian subcontinent.
- The insignificant change in the number of LPS over India under a warming climate is a combined effect of weakened barotropic shear and increased atmospheric moisture content.

References

- Ajayamohan RS, Merryfield WJ, Kharin VV (2010) Increasing trend of synoptic activity and its relationship with extreme rain events over central India. J Climate 23(4):1004-1013. https://doi.org/10.1175/2009JCLI2918.1.
- Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao, X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett. 36:L01704.
- Daniels, Amy, Morrison, James, Joyce, Linda, Crookston, Nicholas, Chen, Shyh-Chin, Mcnulty, Steven (2012) Climate projections FAQ. USDA Forest Service General Technical Report RMRS-GTR.
- Diaz, M, & Boos, W.R. (2019). Barotropic growth of monsoon depressions. Quarterly Journal of Royal Meteorological Society, 145, 824–844. https://doi.org/10.1002/qj.3467
- Hunt KMR, Menon A(2020) The 2018 Kerala floods: a climate change perspective. Clim Dyn 54, 2433–2446.
 https://doi.org/10.1007/s00382-020-05123-7
- Sandeep S, Ajayamohan RS, Boos WR, Sabin TP, Praveen V (2018) Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proc National Acad Sci 115(11):2681–2686. https://doi.org/10.1073/pnas.1709031115
- Stowasser, M, Annamalai, H, Hafner, J (2009). Response of the South Asian Summer Monsoon to Global Warming: Mean and Synoptic Systems. Journal of Climate, 22(4), 1014-1036. https://journals.ametsoc.org/view/journals/clim/22/4/2008jcli2218.1.xml
- Rastogi D, Ashfaq M, Leung LR, Ghosh S, Saha A, Hodges K, Evans K (2018) Characteristics of bay of bengal monsoon depressions in the 21st century. Geophy Res Lett 45(13):6637-6645. https://doi.org/10.1029/2018GL078756.
- Thomas TM, Bala G, Srinivas VV (2021) Characteristics of the monsoon low pressure systems in the Indian subcontinent and the associated extreme precipitation events. Clim. Dyn. 56: 1859–1878. https://doi.org/10.1007/s00382-020-05562-2